login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188918
Alternate partial sums of binomial(2n,n)*binomial(3n,n) (A006480).
2
1, 5, 85, 1595, 33055, 723701, 16429435, 382643525, 9082868245, 218790563255, 5332206228085, 131194789234955, 3253536973286245, 81224561099580155, 2039348104811147845, 51455631680563483835, 1303889832725451598495
OFFSET
0,2
FORMULA
a(n) = sum((-1)^(n-k)*binomial(2*k,k)*binomial(3*k,k),k=0..n).
Recurrence: (n+2)^2*a(n+2)-(26*n^2+77*n+56)*a(n+1)-3*(9*n^2+27*n+20)*a(n)=0.
G.f.: F(1/3,2/3;1;27*x)/(1+x), where F(a1,a2;b1;z) is a hypergeometric series.
a(n) ~ 3^(3*n + 7/2) / (56*Pi*n). - Vaclav Kotesovec, Nov 27 2017
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[2k, k]Binomial[3k, k], {k, 0, n}], {n, 0, 16}] (* fixed by Vaclav Kotesovec, Nov 27 2017 *)
PROG
(Maxima) makelist(sum(binomial(2*k, k)*binomial(3*k, k)*(-1)^(n-k), k, 0, n), n, 0, 16);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 14 2011
STATUS
approved