OFFSET
0,2
FORMULA
a(n) = sum((-1)^(n-k)*binomial(2*k,k)*binomial(3*k,k),k=0..n).
Recurrence: (n+2)^2*a(n+2)-(26*n^2+77*n+56)*a(n+1)-3*(9*n^2+27*n+20)*a(n)=0.
G.f.: F(1/3,2/3;1;27*x)/(1+x), where F(a1,a2;b1;z) is a hypergeometric series.
a(n) ~ 3^(3*n + 7/2) / (56*Pi*n). - Vaclav Kotesovec, Nov 27 2017
MATHEMATICA
Table[Sum[(-1)^(n-k)*Binomial[2k, k]Binomial[3k, k], {k, 0, n}], {n, 0, 16}] (* fixed by Vaclav Kotesovec, Nov 27 2017 *)
PROG
(Maxima) makelist(sum(binomial(2*k, k)*binomial(3*k, k)*(-1)^(n-k), k, 0, n), n, 0, 16);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 14 2011
STATUS
approved