login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152297
Alternate binomial partial sums of binomial(2n,n)*binomial(3n,n) (A006480).
2
1, 5, 79, 1427, 28447, 599435, 13100065, 293737085, 6713171455, 155700711995, 3653740285729, 86561367835805, 2067026079739921, 49689509437820933, 1201321507453119103, 29187308928225658787, 712192597620218620735
OFFSET
0,2
FORMULA
a(n) = sum((-1)^(n-k)*binomial(n,k)*binomial(2*k,k)*binomial(3*k,k),k=0..n).
D-finite with recurrence Recurrence: (n+3)^2*a(n+3)-(24*n^2+120*n+149)*a(n+2)-51*(n+2)^2*a(n+1)-26*(n+1)*(n+2)*a(n)=0.
E.g.f.: exp(-x)*F(1/3,2/3;1,1;27*x), where F(a1,a2;b1;z) is a hypergeometric series.
a(n) ~ 13*sqrt(3) * 26^n / (27*Pi*n). - Vaclav Kotesovec, Mar 02 2014
MATHEMATICA
Table[Sum[Binomial[n, k]Binomial[2k, k]Binomial[3k, k](-1)^(n-k), {k, 0, n}], {n, 0, 16}]
PROG
(Maxima) makelist(sum((-1)^(n-k)*binomial(n, k)*binomial(2*k, k)*binomial(3*k, k), k, 0, n), n, 0, 16);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 14 2011
STATUS
approved