login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152296
Let f(M,N)=2^(-M)*sum_{i=0..N} {(-1)^{i}M!N!(2M-2i)!}/{i!(M-i)!(N-i)!6^{N-i}}; then a(n) = f(3n,n).
2
1, 6, 113400, 32901422400, 67651716132000000, 608762379843757339200000, 17903325789347617610786995200000, 1415199921956087613201896962521600000000, 261375521452474271183649591888039276441600000000, 101519644940256627137917269623207295713536128000000000000, 76392226231236455854222646891536244623780022885776896000000000000
OFFSET
0,2
FORMULA
a(n) ~ sqrt(Pi) * 2^(2*n+1) * 3^(5*n + 1/2) * n^(6*n + 1/2) / exp(6*n + 1/2). - Vaclav Kotesovec, Oct 21 2023
MATHEMATICA
Table[2^(-3*n) * Sum[(-1)^i * (3*n)! * n! * (6*n-2*i)! / (i! * (3*n-i)! * (n-i)! * 6^(n-i)), {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 21 2023 *)
Table[(6*n)! * Hypergeometric1F1[-n, 1/2 - 3*n, -3/2] / (2^(4*n) * 3^n), {n, 0, 20}] (* Vaclav Kotesovec, Oct 21 2023 *)
CROSSREFS
A variant of A132202. Cf. A134648, A134772, A152296.
Sequence in context: A086897 A034208 A003834 * A358811 A076909 A172864
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 18 2009
STATUS
approved