login
A152293
Primes of the form : (p-n)/(n+1)=prime and (n+1)*p+n=prime. n=3.
4
11, 31, 47, 151, 271, 359, 439, 599, 719, 1031, 1759, 1871, 2287, 2711, 2767, 2879, 3719, 3911, 4079, 5119, 5527, 5791, 6199, 6271, 6991, 7151, 7607, 7727, 8447, 8647, 8831, 9151, 9391, 9511, 9839, 10159, 10687, 10847, 11279, 12479, 12919, 13487
OFFSET
1,1
COMMENTS
This is the general form : (p-n)/(n+1)=primeand(n+1)*p+n=prime; 'Safe' primes and'Sophie Germain' primes just one part of this general form; If n=1 then we got'Safe' primes and'Sophie Germain' primes.
MATHEMATICA
lst={}; n=3; Do[p=Prime[k]; If[PrimeQ[(p-n)/(n+1)]&&PrimeQ[(n+1)*p+n], AppendTo[lst, p]], {k, 7!}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved