login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152290
Coefficients in a q-analog of the LambertW function, as a triangle read by rows.
9
1, 1, 2, 1, 5, 5, 5, 1, 14, 21, 31, 30, 19, 9, 1, 42, 84, 154, 210, 245, 217, 175, 105, 49, 14, 1, 132, 330, 708, 1176, 1722, 2148, 2386, 2358, 2080, 1618, 1086, 644, 294, 104, 20, 1, 429, 1287, 3135, 6006, 10164, 15093, 20496, 25188, 28770, 30225, 29511, 26571
OFFSET
0,3
LINKS
Eric Weisstein, q-Exponential Function from MathWorld.
Eric Weisstein, q-Factorial from MathWorld.
FORMULA
G.f.: A(x,q) = Sum_{n>=0} Sum_{k=0..n(n-1)/2} T(n,k)*q^k*x^n/faq(n,q), where faq(n,q) is the q-factorial of n.
G.f.: A(x,q) = (1/x)*Series_Reversion( x/e_q(x,q) ) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f. satisfies: A(x,q) = e_q( x*A(x,q), q) and A( x/e_q(x,q), q) = e_q(x,q).
G.f. at q=1: A(x,1) = LambertW(-x)/(-x).
Row sums at q=+1: Sum_{k=0..n(n-1)/2} T(n,k) = (n+1)^(n-1).
Row sums at q=-1: Sum_{k=0..n(n-1)/2} T(n,k)*(-1)^k = (n+1)^[(n-1)/2] (A152291).
Sum_{k=0..n(n-1)/2} T(n,k)*exp(2Pi*I*k/n)) = 1 for n>=1; i.e., the n-th row sum at q = exp(2Pi*I/n), the n-th root of unity, equals 1 for n>=1. [From Paul D. Hanna, Dec 04 2008]
Sum_{k=0..n*(n-1)/2} T(n,k)*q^k = Sum_{pi} n!/(n-k+1)!*faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs through all nonnegative integer solutions of e(1)+2*e(2)+...+n*e(n) = n and k = e(1)+e(2)+...+e(n). [From Vladeta Jovovic, Dec 05 2008]
Sum_{k=0..[n/2]} T(n, n*k) = (1/n)*Sum_{d|n} phi(n/d)*(n+1)^(d-1), for n>0, with a(0)=1. [From Paul D. Hanna, Jul 18 2013]
Sum_{k=0..[n/2]} T(n, n*k) = A121774(n), the number of n-bead necklaces with n+1 colors, divided by (n+1). [From Paul D. Hanna, Jul 18 2013]
EXAMPLE
Triangle, with columns k=0..n(n-1)/2 for row n>=0, begins:
1;
1;
2, 1;
5, 5, 5, 1;
14, 21, 31, 30, 19, 9, 1;
42, 84, 154, 210, 245, 217, 175, 105, 49, 14, 1;
132, 330, 708, 1176, 1722, 2148, 2386, 2358, 2080, 1618, 1086, 644, 294, 104, 20, 1;
429, 1287, 3135, 6006, 10164, 15093, 20496, 25188, 28770, 30225, 29511, 26571, 22161, 16926, 11832, 7392, 4089, 1932, 714, 195, 27, 1;...
where row sums = (n+1)^(n-1) and column 0 is A000108 (Catalan numbers).
Row sums at q=-1 = (n+1)^[(n-1)/2] (A152291): [1,1,1,4,5,36,49,512,729,...].
The generating function starts:
A(x,q) = 1 + x + (2 + q)*x^2/faq(2,q) + (5 + 5*q + 5*q^2 + q^3)*x^3/faq(3,q) + (14 + 21*q + 31*q^2 + 30*q^3 + 19*q^4 + 9*q^5 + q^6)*x^4/faq(4,q) + ...
G.f. satisfies: A(x,q) = e_q( x*A(x,q), q), where the q-exponential series e_q(x,q) begins:
e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1):
faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2),
faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
Special cases of g.f.:
q=0: A(x,0) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 +... (Catalan)
q=1: A(x,1) = 1 + x + 3/2*x^2 + 16/6*x^3 + 125/24*x^4 +...= LambertW(-x)/(-x)
q=2: A(x,2) = 1 + x + 4/3*x^2 + 43/21*x^3 + 1076/315*x^4 + 58746/9765*x^5 +...
q=-1: Can A(x,-1) be defined? See A152291.
PROG
(PARI) /* G.f.: LambertW_q(x, q) = (1/x)*Series_Reversion( x/e_q(x, q) ): */
{T(n, k)=local(e_q=1+sum(j=1, n, x^j/prod(i=1, j, (q^i-1)/(q-1))), LW_q=serreverse(x/e_q+x^2*O(x^n))/x); polcoeff(polcoeff(LW_q+x*O(x^n), n, x)*prod(i=1, n, (q^i-1)/(q-1))+q*O(q^k), k, q)}
for(n=0, 8, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A152291 (q=-1), A000272 (row sums), A000108 (column 0), A002054 (column 1).
Cf. A152282 (q=2), A152283 (q=3).
Cf. A121774.
Sequence in context: A124226 A248797 A193536 * A248699 A032006 A377806
KEYWORD
eigen,nonn,tabf
AUTHOR
Paul D. Hanna, Dec 02 2008
STATUS
approved