Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jul 10 2015 19:37:35
%S 1,1,2,1,5,5,5,1,14,21,31,30,19,9,1,42,84,154,210,245,217,175,105,49,
%T 14,1,132,330,708,1176,1722,2148,2386,2358,2080,1618,1086,644,294,104,
%U 20,1,429,1287,3135,6006,10164,15093,20496,25188,28770,30225,29511,26571
%N Coefficients in a q-analog of the LambertW function, as a triangle read by rows.
%H Paul D. Hanna, <a href="/A152290/b152290.txt">Rows 0 to 30 of the triangle, flattened.</a>
%H Eric Weisstein, <a href="http://mathworld.wolfram.com/q-ExponentialFunction.html">q-Exponential Function</a> from MathWorld.
%H Eric Weisstein, <a href="http://mathworld.wolfram.com/q-Factorial.html">q-Factorial</a> from MathWorld.
%F G.f.: A(x,q) = Sum_{n>=0} Sum_{k=0..n(n-1)/2} T(n,k)*q^k*x^n/faq(n,q), where faq(n,q) is the q-factorial of n.
%F G.f.: A(x,q) = (1/x)*Series_Reversion( x/e_q(x,q) ) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
%F G.f. satisfies: A(x,q) = e_q( x*A(x,q), q) and A( x/e_q(x,q), q) = e_q(x,q).
%F G.f. at q=1: A(x,1) = LambertW(-x)/(-x).
%F Row sums at q=+1: Sum_{k=0..n(n-1)/2} T(n,k) = (n+1)^(n-1).
%F Row sums at q=-1: Sum_{k=0..n(n-1)/2} T(n,k)*(-1)^k = (n+1)^[(n-1)/2] (A152291).
%F Sum_{k=0..n(n-1)/2} T(n,k)*exp(2Pi*I*k/n)) = 1 for n>=1; i.e., the n-th row sum at q = exp(2Pi*I/n), the n-th root of unity, equals 1 for n>=1. [From _Paul D. Hanna_, Dec 04 2008]
%F Sum_{k=0..n*(n-1)/2} T(n,k)*q^k = Sum_{pi} n!/(n-k+1)!*faq(n,q)/Product_{i=1..n} e(i)!*faq(i,q)^e(i), where pi runs through all nonnegative integer solutions of e(1)+2*e(2)+...+n*e(n) = n and k = e(1)+e(2)+...+e(n). [From _Vladeta Jovovic_, Dec 05 2008]
%F Sum_{k=0..[n/2]} T(n, n*k) = (1/n)*Sum_{d|n} phi(n/d)*(n+1)^(d-1), for n>0, with a(0)=1. [From _Paul D. Hanna_, Jul 18 2013]
%F Sum_{k=0..[n/2]} T(n, n*k) = A121774(n), the number of n-bead necklaces with n+1 colors, divided by (n+1). [From _Paul D. Hanna_, Jul 18 2013]
%e Triangle, with columns k=0..n(n-1)/2 for row n>=0, begins:
%e 1;
%e 1;
%e 2, 1;
%e 5, 5, 5, 1;
%e 14, 21, 31, 30, 19, 9, 1;
%e 42, 84, 154, 210, 245, 217, 175, 105, 49, 14, 1;
%e 132, 330, 708, 1176, 1722, 2148, 2386, 2358, 2080, 1618, 1086, 644, 294, 104, 20, 1;
%e 429, 1287, 3135, 6006, 10164, 15093, 20496, 25188, 28770, 30225, 29511, 26571, 22161, 16926, 11832, 7392, 4089, 1932, 714, 195, 27, 1;...
%e where row sums = (n+1)^(n-1) and column 0 is A000108 (Catalan numbers).
%e Row sums at q=-1 = (n+1)^[(n-1)/2] (A152291): [1,1,1,4,5,36,49,512,729,...].
%e The generating function starts:
%e A(x,q) = 1 + x + (2 + q)*x^2/faq(2,q) + (5 + 5*q + 5*q^2 + q^3)*x^3/faq(3,q) + (14 + 21*q + 31*q^2 + 30*q^3 + 19*q^4 + 9*q^5 + q^6)*x^4/faq(4,q) + ...
%e G.f. satisfies: A(x,q) = e_q( x*A(x,q), q), where the q-exponential series e_q(x,q) begins:
%e e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +...
%e The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1):
%e faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2),
%e faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
%e Special cases of g.f.:
%e q=0: A(x,0) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 +... (Catalan)
%e q=1: A(x,1) = 1 + x + 3/2*x^2 + 16/6*x^3 + 125/24*x^4 +...= LambertW(-x)/(-x)
%e q=2: A(x,2) = 1 + x + 4/3*x^2 + 43/21*x^3 + 1076/315*x^4 + 58746/9765*x^5 +...
%e q=-1: Can A(x,-1) be defined? See A152291.
%o (PARI) /* G.f.: LambertW_q(x,q) = (1/x)*Series_Reversion( x/e_q(x,q) ): */
%o {T(n,k)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))),LW_q=serreverse(x/e_q+x^2*O(x^n))/x); polcoeff(polcoeff(LW_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))+q*O(q^k),k,q)}
%o for(n=0,8,for(k=0,n*(n-1)/2,print1(T(n,k),","));print(""))
%Y Cf. A152291 (q=-1), A000272 (row sums), A000108 (column 0), A002054 (column 1).
%Y Cf. A152282 (q=2), A152283 (q=3).
%Y Cf. A121774.
%K eigen,nonn,tabf
%O 0,3
%A _Paul D. Hanna_, Dec 02 2008