login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377806
Decimal expansion of the circumradius of a snub dodecahedron with unit edge length.
6
2, 1, 5, 5, 8, 3, 7, 3, 7, 5, 1, 1, 5, 6, 3, 9, 7, 0, 1, 8, 3, 6, 6, 2, 9, 0, 7, 6, 6, 9, 3, 0, 5, 8, 2, 7, 7, 0, 1, 6, 8, 5, 1, 2, 1, 8, 7, 7, 4, 8, 1, 1, 8, 2, 2, 4, 1, 2, 2, 1, 5, 4, 3, 0, 1, 2, 0, 0, 6, 7, 0, 8, 0, 9, 4, 9, 4, 8, 4, 0, 0, 0, 5, 3, 4, 2, 9, 9, 2, 6
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Snub Dodecahedron.
Wikipedia, Snub dodecahedron.
FORMULA
Equals sqrt(1 + 1/(1 - A377849))/2.
Equals the real root closest to 2 of 4096*x^12 - 27648*x^10 + 47104*x^8 - 35776*x^6 + 13872*x^4 -2696*x^2 + 209.
EXAMPLE
2.1558373751156397018366290766930582770168512187748...
MATHEMATICA
First[RealDigits[Sqrt[1 + 1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *)
First[RealDigits[PolyhedronData["SnubDodecahedron", "Circumradius"], 10, 100]]
CROSSREFS
Cf. A377804 (surface area), A377805 (volume), A377807 (midradius).
Cf. A179296 (analogous for a regular dodecahedron).
Cf. A377849.
Sequence in context: A152290 A248699 A032006 * A167158 A074392 A284428
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Nov 10 2024
STATUS
approved