login
A377807
Decimal expansion of the midradius of a snub dodecahedron with unit edge length.
7
2, 0, 9, 7, 0, 5, 3, 8, 3, 5, 2, 5, 2, 0, 8, 7, 9, 9, 2, 4, 0, 3, 9, 5, 9, 0, 5, 2, 3, 4, 8, 2, 8, 6, 2, 4, 0, 0, 3, 0, 8, 3, 9, 7, 3, 0, 5, 8, 1, 0, 3, 0, 7, 6, 2, 7, 3, 1, 7, 0, 6, 1, 7, 3, 1, 2, 7, 0, 5, 2, 9, 1, 4, 2, 5, 7, 7, 7, 5, 4, 5, 5, 3, 7, 3, 4, 0, 9, 4, 8
OFFSET
1,1
FORMULA
Equals sqrt(1/(1 - A377849))/2.
Equals the real root closest to 2 of 4096*x^12 - 21504*x^10 + 16384*x^8 - 4672*x^6 + 624*x^4 - 40*x^2 + 1.
EXAMPLE
2.0970538352520879924039590523482862400308397305810...
MATHEMATICA
First[RealDigits[Sqrt[1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *)
First[RealDigits[PolyhedronData["SnubDodecahedron", "Midradius"], 10, 100]]
CROSSREFS
Cf. A377804 (surface area), A377805 (volume), A377806 (circumradius).
Cf. A239798 (analogous for a regular dodecahedron).
Cf. A377849.
Sequence in context: A021481 A372910 A029686 * A083864 A154937 A037996
KEYWORD
nonn,cons,easy,changed
AUTHOR
Paolo Xausa, Nov 10 2024
STATUS
approved