login
A377810
E.g.f. satisfies A(x) = exp(x * A(x)) / (1 - x)^2.
4
1, 3, 17, 154, 1993, 34066, 728209, 18733926, 564117425, 19473863986, 758421401401, 32901791851006, 1573602042306265, 82267318018246986, 4667656830688700801, 285662368622361581206, 18758565855176593500385, 1315663025587514658845026, 98160436697525045768511721
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x/(1-x)^2) )/(1-x)^2.
E.g.f.: -LambertW(-x/(1-x)^2)/x.
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+k+1,n-k)/k!.
a(n) ~ 2^(n + 3/2) * sqrt(1 + 4*exp(-1) - sqrt(1 + 4*exp(-1))) * n^(n-1) / ((-1 + sqrt(1 + 4*exp(-1)))^(3/2) * (1 + 2*exp(-1) - sqrt(1 + 4*exp(-1)))^(n + 1/2) * exp(2*n+1)). - Vaclav Kotesovec, Nov 11 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^2))/(1-x)^2))
(PARI) a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+k+1, n-k)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 08 2024
STATUS
approved