OFFSET
1,4
COMMENTS
Number of partitions of n into parts with exactly two different sizes, the sizes being relatively prime and also the multiplicities of the two part sizes being relatively prime. - Andrew Howroyd, Nov 10 2024
FORMULA
Moebius transform of A274108. - Andrew Howroyd, Nov 10 2024
PROG
(Python)
def a(n):
count = 0
for a in range(1, n+1):
for b in range(a + 1, n+1):
if gcd(a, b) == 1:
for x in range(1, n+1):
for y in range(1, n+1):
if gcd(x, y) == 1 and a * x + b * y == n:
count += 1
return count
print([a(n) for n in range(1, 21)])
(Python)
from math import gcd
from sympy import divisors
def A377812(n): return sum(1 for ax in range(1, n-1) for a in divisors(ax, generator=True) for b in divisors(n-ax, generator=True) if a<b and gcd(a, b)==gcd(ax//a, (n-ax)//b)==1) # Chai Wah Wu, Dec 11 2024
(PARI) a(n)={sum(b=2, n-1, sum(y=1, (n-1)\b, my(s=n-b*y); sumdiv(s, a, a<b && gcd(a, b)==1 && gcd(s/a, y)==1)))} \\ Andrew Howroyd, Nov 10 2024
(PARI) seq(n)={my(v=Vec(sum(k=1, n-1, numdiv(k)*x^k, O(x^n))^2, -n), u=vector(n, n, moebius(n))); dirmul(dirmul(u, u), vector(#v, n, v[n]+numdiv(n)-sigma(n))/2)} \\ Andrew Howroyd, Nov 10 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Anshveer Bindra, Nov 08 2024
EXTENSIONS
a(21) onwards from Andrew Howroyd, Nov 10 2024
STATUS
approved