login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of quadruples of positive integers (x,y,a,b) such that a < b, gcd(a,b) = gcd(x,y) = 1 and a*x + b*y = n.
1

%I #32 Dec 11 2024 15:41:29

%S 0,0,1,2,5,4,11,9,15,12,27,14,37,22,32,31,59,26,71,38,58,48,97,42,99,

%T 62,93,68,141,48,157,91,120,94,150,78,207,112,154,108,241,84,259,138,

%U 170,150,295,116,289,144,232,178,353,136,304,188,274,210,413,132

%N Number of quadruples of positive integers (x,y,a,b) such that a < b, gcd(a,b) = gcd(x,y) = 1 and a*x + b*y = n.

%C Number of partitions of n into parts with exactly two different sizes, the sizes being relatively prime and also the multiplicities of the two part sizes being relatively prime. - _Andrew Howroyd_, Nov 10 2024

%F Moebius transform of A274108. - _Andrew Howroyd_, Nov 10 2024

%o (Python)

%o def a(n):

%o count = 0

%o for a in range(1, n+1):

%o for b in range(a + 1, n+1):

%o if gcd(a, b) == 1:

%o for x in range(1, n+1):

%o for y in range(1, n+1):

%o if gcd(x, y) == 1 and a * x + b * y == n:

%o count += 1

%o return count

%o print([a(n) for n in range(1,21)])

%o (Python)

%o from math import gcd

%o from sympy import divisors

%o def A377812(n): return sum(1 for ax in range(1,n-1) for a in divisors(ax,generator=True) for b in divisors(n-ax,generator=True) if a<b and gcd(a,b)==gcd(ax//a,(n-ax)//b)==1) # _Chai Wah Wu_, Dec 11 2024

%o (PARI) a(n)={sum(b=2, n-1, sum(y=1, (n-1)\b, my(s=n-b*y); sumdiv(s, a, a<b && gcd(a,b)==1 && gcd(s/a,y)==1)))} \\ _Andrew Howroyd_, Nov 10 2024

%o (PARI) seq(n)={my(v=Vec(sum(k=1, n-1, numdiv(k)*x^k, O(x^n))^2, -n), u=vector(n, n, moebius(n))); dirmul(dirmul(u,u), vector(#v, n, v[n]+numdiv(n)-sigma(n))/2)} \\ _Andrew Howroyd_, Nov 10 2024

%Y Cf. A002133, A274108.

%K nonn

%O 1,4

%A _Anshveer Bindra_, Nov 08 2024

%E a(21) onwards from _Andrew Howroyd_, Nov 10 2024