OFFSET
0,1
COMMENTS
arctanh(phi-1) is the solution for real valued x in tanh(x) = d/dx tanh(x).
arctanh(phi-1) is the solution for real valued x in cosh(x) * sinh(x) = 1. - Colin Linzer, Nov 22 2024
FORMULA
Equals (1/2)*log(2+sqrt(5)).
Equals (3/2)*log(phi).
Equals arccosh(sqrt(phi)).
Equals arcsinh(sqrt(phi-1)).
Equals f(phi-1) with f(x) = (1/2)*log((2-x+2*sqrt(1-x))/x), a branch of the converse function of the derivative of tanh(x).
Equals 3*A202541. - Hugo Pfoertner, Nov 12 2024
Equals arcsinh(2)/2. - Colin Linzer, Nov 22 2024
EXAMPLE
0.721817737589405171246638370136552634702...
MATHEMATICA
RealDigits[ArcTanh[GoldenRatio - 1], 10, 120][[1]] (* Amiram Eldar, Nov 12 2024 *)
PROG
(PARI) atanh((1+sqrt(5))/2-1)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Colin Linzer, Nov 08 2024
STATUS
approved