login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326002
G.f.: Sum_{n>=0} (n+1) * x^n * (1 + x^n)^n.
4
1, 2, 5, 4, 11, 6, 22, 8, 29, 22, 41, 12, 89, 14, 71, 76, 109, 18, 214, 20, 196, 190, 155, 24, 573, 56, 209, 388, 519, 30, 877, 32, 809, 694, 341, 316, 2119, 38, 419, 1132, 2411, 42, 2045, 44, 2531, 2986, 599, 48, 6053, 106, 3011, 2500, 4759, 54, 4978, 4016, 6589, 3478, 929, 60, 21468, 62, 1055, 5524, 10713, 10076, 12046, 68, 13499, 6142, 18656, 72, 34474, 74, 1481, 29716, 20939, 5622, 28432, 80, 57921, 10000, 1805, 84, 84155, 42926, 1979, 12268, 41449, 90, 122339, 24116, 44759, 14974, 2351, 77616, 153969
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - p*q^n*r)^(n+k),
for some fixed integer k; here, k = 2 and p = 1, q = x, r = x.
LINKS
FORMULA
Generating functions.
(1) Sum_{n>=0} (n+1) * x^n * (1 + x^n)^n.
(2) Sum_{n>=0} (n+1) * x^(n*(n+1)) / (1 - x^(n+1))^(n+2).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 4*x^3 + 11*x^4 + 6*x^5 + 22*x^6 + 8*x^7 + 29*x^8 + 22*x^9 + 41*x^10 + 12*x^11 + 89*x^12 + 14*x^13 + 71*x^14 + 76*x^15 + 109*x^16 + 18*x^17 + 214*x^18 + 20*x^19 + 196*x^20 + ...
where we have the following series identity:
A(x) = 1 + 2*x*(1+x) + 3*x^2*(1+x^2)^2 + 4*x^3*(1+x^3)^3 + 5*x^4*(1+x^4)^4 + 6*x^5*(1+x^5)^5 + 7*x^6*(1+x^6)^6 + 8*x^7*(1+x^7)^7 + 9*x^8*(1+x^8)^8 + 10*x^9*(1+x^9)^9 + ...
is equal to
A(x) = 1/(1-x)^2 + 2*x^2/(1-x^2)^3 + 3*x^6/(1-x^3)^4 + 4*x^12/(1-x^4)^5 + 5*x^20/(1-x^5)^6 + 6*x^30/(1-x^6)^7 + 7*x^42/(1-x^7)^8 + 8*x^56/(1-x^8)^9 + ...
MAPLE
N:= 100: # for a(0)..a(N)
S:= series(add((n+1)*x^n*(1+x^n)^n, n=0..N), x, N+1):
seq(coeff(S, x, n), n=0..N); # Robert Israel, Jun 03 2019
PROG
(PARI) {a(n) = my(A = sum(m=0, n, (m+1) * x^m * (1 + x^m +x*O(x^n))^m)); polcoeff(A, n)}
for(n=0, 120, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n, (m+1) * x^m * x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+2))); polcoeff(A, n)}
for(n=0, 120, print1(a(n), ", "))
CROSSREFS
Cf. A217668 (k=1), A326003 (k=3), A326004 (k=4), A326005 (k=5).
Sequence in context: A232646 A100710 A069913 * A377812 A072403 A010078
KEYWORD
nonn,look
AUTHOR
Paul D. Hanna, Jun 01 2019
STATUS
approved