login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the circumradius of a snub dodecahedron with unit edge length.
6

%I #9 Nov 11 2024 08:08:48

%S 2,1,5,5,8,3,7,3,7,5,1,1,5,6,3,9,7,0,1,8,3,6,6,2,9,0,7,6,6,9,3,0,5,8,

%T 2,7,7,0,1,6,8,5,1,2,1,8,7,7,4,8,1,1,8,2,2,4,1,2,2,1,5,4,3,0,1,2,0,0,

%U 6,7,0,8,0,9,4,9,4,8,4,0,0,0,5,3,4,2,9,9,2,6

%N Decimal expansion of the circumradius of a snub dodecahedron with unit edge length.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SnubDodecahedron.html">Snub Dodecahedron</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Snub_dodecahedron">Snub dodecahedron</a>.

%F Equals sqrt(1 + 1/(1 - A377849))/2.

%F Equals the real root closest to 2 of 4096*x^12 - 27648*x^10 + 47104*x^8 - 35776*x^6 + 13872*x^4 -2696*x^2 + 209.

%e 2.1558373751156397018366290766930582770168512187748...

%t First[RealDigits[Sqrt[1 + 1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *)

%t First[RealDigits[PolyhedronData["SnubDodecahedron", "Circumradius"], 10, 100]]

%Y Cf. A377804 (surface area), A377805 (volume), A377807 (midradius).

%Y Cf. A179296 (analogous for a regular dodecahedron).

%Y Cf. A377849.

%K nonn,cons,easy

%O 1,1

%A _Paolo Xausa_, Nov 10 2024