login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152292
Primes p of the form : (p-n)/(n+1)=prime and (n+1)*p+n=prime. n=2.
5
17, 23, 59, 89, 239, 269, 293, 383, 419, 503, 953, 1013, 1193, 1259, 1823, 1979, 2129, 2633, 2789, 3209, 3389, 4229, 5099, 5333, 6089, 6299, 6803, 7019, 7673, 7853, 8123, 8513, 8753, 8819, 9059, 9203, 10169, 10223, 10589, 10853, 10979, 11159, 12689
OFFSET
1,1
COMMENTS
This is the general form : (p-n)/(n+1)=prime and (n+1)*p+n=prime; 'Safe' primes and 'Sophie Germain' primes just one part of this general form; If n=1 then we got 'Safe' primes and 'Sophie Germain' primes.
LINKS
MAPLE
Res:= NULL: count:= 0:
q:= 1:
while count < 100 do
q:= nextprime(q);
if isprime(3*q+2) and isprime(9*q+8)
then Res:= Res, 3*q+2; count:= count+1
fi
od:
Res; # Robert Israel, Mar 07 2018
MATHEMATICA
lst={}; n=2; Do[p=Prime[k]; If[PrimeQ[(p-n)/(n+1)]&&PrimeQ[(n+1)*p+n], AppendTo[lst, p]], {k, 7!}]; lst
PROG
(PARI) lista(nn) = forprime(p=17, nn, if(isprime(3*p+2) && isprime(p\3), print1(p", "))); \\ Altug Alkan, Mar 07 2018
(Magma) [NthPrime(n): n in [5..2*10^3] | IsPrime(NthPrime(n) div 3) and IsPrime(3*NthPrime(n)+2)]; // Vincenzo Librandi, Mar 08 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved