

A152294


Primes of the form : (pn)/(n+1)=prime and (n+1)*p+n=prime. n=4.


3



29, 89, 419, 509, 659, 1259, 1289, 1319, 1949, 2099, 2309, 2339, 2609, 2939, 3989, 4049, 6089, 6599, 7559, 8609, 9239, 9539, 10709, 12659, 12899, 13469, 13499, 18119, 20399, 21089, 21269, 21419, 22469, 23369, 26669, 27539, 28559, 30059, 30449
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

This is the general form : (pn)/(n+1)=primeand(n+1)*p+n=prime; 'Safe' primes and'Sophie Germain' primes just one part of this general form; If n=1 then we got'Safe' primes and'Sophie Germain' primes.


LINKS



MATHEMATICA

lst={}; n=4; Do[p=Prime[k]; If[PrimeQ[(pn)/(n+1)]&&PrimeQ[(n+1)*p+n], AppendTo[lst, p]], {k, 7!}]; lst


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



