login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076909
Coefficients of 4-point function in dimension 4.
5
6, 120960, 4136832000, 148146924602880, 5420219848911544320, 200623934537137119778560, 7478994517395643259712737280, 280135301818357004749298146851840, 10528167289356385699173014219946393600, 396658819202496234945300681212382224722560, 14972930462574202465673643937107499992165427200
OFFSET
0,1
LINKS
David R. Morrison, Mathematical Aspects of Mirror Symmetry, arXiv:alg-geom/9609021, 1996; in Complex Algebraic Geometry (J. Kollár, ed.), IAS/Park City Math. Series, vol. 3, 1997, pp. 265-340
H. Movasati, Foliation.lib.
H. Movasati, Y. Nikdelan, Gauss-Manin Connection in Disguise: Dwork Family, arXiv:1603.09411 [math.AG], 2016-2017. See (1/6)Y_1^2(q) in Section 8.3.
FORMULA
G.f.: ((-1/36 + 14*A300196)^4)/(216((1/36 + 20*A300194)^6+1/46656 * A300199)), where the sequence numbers stand for the generating functions of the respective sequences. This is from equation (7.13) of the Movasati & Nikdelan link. - Younes Nikdelan, Mar 28 2018
PROG
(SINGULAR)
// This program has to be compiled in SINGULAR. By changing "int iter" you can
// calculate more coefficients. Note that this program is using a library calling
// "foliation.lib" written by H. Movasati, which is available in the link given in
// LINKS section as Foliation.lib.
LIB "linalg.lib"; LIB "foliation.lib";
ring r=0, (t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8, q), dp;
int pm=1; number t10=1/36; number ko=1/216; number c4=ko^2; number t20=-1; number t81=49/18; number a=-6*t20;
poly dis=t_1^6-t_6;
poly dt1=dis*(-t_1*t_2+t_3);
poly dt2=(1296*c4*t_3^2*t_4*t_8-t_1^6*t_2^2+t_2^2*t_6);
poly dt3=(1296*c4*t_3^2*t_5*t_8-3*t_1^6*t_2*t_3+3*t_2*t_3*t_6);
poly dt4=(-1296*c4*t_3^2*t_7*t_8-t_1^6*t_2*t_4+t_2*t_4*t_6);
poly dt5=(1296*c4*t_3*t_5^2*t_8-4*t_1^6*t_2*t_5-2*t_1^6*t_3*t_4+ 5*t_1^4*t_3*t_8+4*t_2*t_5*t_6+2*t_3*t_4*t_6)/(2);
poly dt6=dis*(-6*t_2*t_6);
poly dt7=dis*((1296*c4*t_4^2-t_1^2)/(2592*c4));
poly dt8=(-3*t_1^6*t_2*t_8+3*t_1^5*t_3*t_8+3*t_2*t_6*t_8);
list pose;
pose=(60*ko)/(49*t10^2)*t81*q+(t10), (-162*t20*ko)/(49*t10^3)*t81*q+(t20), (-66*t20*ko)/(7*t10^2)*t81*q+(t10*t20), 16/(147*t10^2)*t81*q+(-t10)/(36*ko), 45/(49*t10)*t81*q+(-t10^2)/(12*ko), (3888*t10^3*ko)/49*t81*q, 1/(1512*t10*t20*ko)*t81*q+(-t10^2)/(1296*t20*ko^2), t81*q+(-t10^3)/(36*ko);
list vecfield=dt1, dt2, dt3, dt4, dt5, dt6, dt7, dt8;
list denomv=dis, dis, dis, dis, dis, dis, dis, dis;
intvec upto=1, 1, 1, 1, 1, 1, 1, 1; intvec whichpow;
int iter=10;
int n;
for (n=2; n<=iter; n=n+1){upto=n, n, n, n, n, n, n, n; whichpow=upto; pose=qexpansion(vecfield, denomv, pose, upto, upto, a); n; }
poly y=1/216*pose[3]^4*OneOver(pose[1]^6-pose[6], std(ideal(q^(iter+1))), iter+1);
reduce(y, std(ideal(q^(iter+1))));
/* Younes Nikdelan, Mar 28 2018 */
CROSSREFS
Sequence in context: A003834 A152296 A358811 * A172864 A352022 A262187
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 28 2002
EXTENSIONS
a(8)-a(10) from Younes Nikdelan, Feb 28 2018
STATUS
approved