login
A152299
A threes sequence that gets more even factors out: a(n)=(3^n - 1)*(3^n + 1)/2^(4 - Mod[n, 2]).
0
1, 5, 91, 410, 7381, 33215, 597871, 2690420, 48427561, 217924025, 3922632451, 17651846030, 317733228541, 1429799528435, 25736391511831, 115813761803240, 2084647712458321, 9380914706062445, 168856464709124011
OFFSET
0,2
FORMULA
a(n)=(3^n - 1)*(3^n + 1)/2^(4 - Mod[n, 2]).
a(n)=82*a(n-2)-81*a(n-4). G.f.: (1+5x+9x^2)/((1-x)(1-9x)(1+x)(1+9x)). [From R. J. Mathar, Dec 04 2008]
MATHEMATICA
Clear[a, n];
a[n_] :=(3^n - 1)*(3^n + 1)/2^(4 - Mod[n, 2]);
Table[a[n], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Dec 02 2008
STATUS
approved