|
|
A132202
|
|
Number of 3n X 2n (0,1)-matrices with every row sum 2 and column sum 3.
|
|
3
|
|
|
1, 1860, 90291600, 31082452632000, 46764764308702440000, 229747284991066934931840000, 3031982831164890119435183865600000, 93453554057243260025029337978773248000000, 6055976192395031960092036887782708145734400000000, 760152286561053082358524425840024164536832608896000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
Gao, Shanzhen, and Matheis, Kenneth, Closed formulas and integer sequences arising from the enumeration of (0,1)-matrices with row sum two and some constant column sums. In Proceedings of the Forty-First Southeastern International Conference on Combinatorics, Graph Theory and Computing. Congr. Numer. 202 (2010), 45-53.
|
|
LINKS
|
Table of n, a(n) for n=1..10.
|
|
FORMULA
|
a(M,N)=2^(-M)*sum_{i=0..N} {(-1)^{i}M!N!(2M-2i)!}/{i!(M-i)!(N-i)!6^{N-i}}, for M=3n, N=2n.
|
|
EXAMPLE
|
1 for 3X2:
11
11
11
1860 for 6X4.
90291600 for 9X6.
|
|
MAPLE
|
f:=proc(m, n) 2^(-m)*add( ((-1)^(i)*m!*n!*(2*m-2*i)!)/ (i!*(m-i)!*(n-i)!*6^(n-i)), i=0..n); end;
[seq(f(3*n, 2*n), n=0..10)];
|
|
CROSSREFS
|
Cf. A134772, A134648.
Sequence in context: A213868 A022062 A107526 * A054815 A295995 A237257
Adjacent sequences: A132199 A132200 A132201 * A132203 A132204 A132205
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Shanzhen Gao, Nov 05 2007
|
|
EXTENSIONS
|
Edited and extended with Maple code by R. H. Hardin and N. J. A. Sloane, Oct 18 2009
|
|
STATUS
|
approved
|
|
|
|