login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132200
Numbers in (4,4)-Pascal triangle .
3
1, 4, 4, 4, 8, 4, 4, 12, 12, 4, 4, 16, 24, 16, 4, 4, 20, 40, 40, 20, 4, 4, 24, 60, 80, 60, 24, 4, 4, 28, 84, 140, 140, 84, 28, 4, 4, 32, 112, 224, 280, 224, 112, 32, 4, 4, 36, 144, 336, 504, 504, 336, 144, 36, 4, 4, 40, 180, 480, 840, 1008, 840, 480, 180, 40, 4
OFFSET
0,2
COMMENTS
This triangle belongs to the family of (x,y)-Pascal triangles ; other triangles arise by choosing different values for (x,y): (1,1) -> A007318 ; (1,0) -> A071919 ; (3,2) -> A029618 ; (2,2) -> A134058 ; (-1,1) -> A112467 ; (0,1) -> A097805 ; (5,5) -> A135089 ; etc..
FORMULA
T(n,k) = 4*binomial(n,k), n>0 ; T(0,0)=1.
Sum_{k=0..n} T(n,k) = 2^(n+2) - 3*[n=0]. - G. C. Greubel, May 03 2021
EXAMPLE
Triangle begins:
1;
4, 4;
4, 8, 4;
4, 12, 12, 4;
4, 16, 24, 16, 4;
4, 20, 40, 40, 20, 4;
MATHEMATICA
Table[4*Binomial[n, k] -3*Boole[n==0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 03 2021 *)
PROG
(Magma) [1] cat [4*Binomial(n, k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
(Sage)
def A132200(n, k): return 4*binomial(n, k) - 3*bool(n==0)
flatten([[A132200(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Nov 19 2007
STATUS
approved