login
A132200
Numbers in (4,4)-Pascal triangle .
3
1, 4, 4, 4, 8, 4, 4, 12, 12, 4, 4, 16, 24, 16, 4, 4, 20, 40, 40, 20, 4, 4, 24, 60, 80, 60, 24, 4, 4, 28, 84, 140, 140, 84, 28, 4, 4, 32, 112, 224, 280, 224, 112, 32, 4, 4, 36, 144, 336, 504, 504, 336, 144, 36, 4, 4, 40, 180, 480, 840, 1008, 840, 480, 180, 40, 4
OFFSET
0,2
COMMENTS
This triangle belongs to the family of (x,y)-Pascal triangles ; other triangles arise by choosing different values for (x,y): (1,1) -> A007318 ; (1,0) -> A071919 ; (3,2) -> A029618 ; (2,2) -> A134058 ; (-1,1) -> A112467 ; (0,1) -> A097805 ; (5,5) -> A135089 ; etc..
FORMULA
T(n,k) = 4*binomial(n,k), n>0 ; T(0,0)=1.
Sum_{k=0..n} T(n,k) = 2^(n+2) - 3*[n=0]. - G. C. Greubel, May 03 2021
EXAMPLE
Triangle begins:
1;
4, 4;
4, 8, 4;
4, 12, 12, 4;
4, 16, 24, 16, 4;
4, 20, 40, 40, 20, 4;
MATHEMATICA
Table[4*Binomial[n, k] -3*Boole[n==0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 03 2021 *)
PROG
(Magma) [1] cat [4*Binomial(n, k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
(Sage)
def A132200(n, k): return 4*binomial(n, k) - 3*bool(n==0)
flatten([[A132200(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Nov 19 2007
STATUS
approved