OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n,k) = 4*binomial(n,k), n>0 ; T(0,0)=1.
Sum_{k=0..n} T(n,k) = 2^(n+2) - 3*[n=0]. - G. C. Greubel, May 03 2021
EXAMPLE
Triangle begins:
1;
4, 4;
4, 8, 4;
4, 12, 12, 4;
4, 16, 24, 16, 4;
4, 20, 40, 40, 20, 4;
MATHEMATICA
Table[4*Binomial[n, k] -3*Boole[n==0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 03 2021 *)
PROG
(Magma) [1] cat [4*Binomial(n, k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
(Sage)
def A132200(n, k): return 4*binomial(n, k) - 3*bool(n==0)
flatten([[A132200(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Nov 19 2007
STATUS
approved