login
A144780
Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 6.
17
6, 31, 931, 865831, 749662454731, 561993796032558961827631, 315837026779085485103718410756049100028793244531
OFFSET
1,1
LINKS
Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
FORMULA
a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 6.
a(n) ~ c^(2^n) where is c is 2.350117384... (A144804).
MATHEMATICA
a = {}; k = 6; Do[AppendTo[a, k]; k = k^2 - k + 1, {n, 1, 10}]; a
NestList[#^2-#+1&, 6, 10] (* Harvey P. Dale, Dec 19 2024 *)
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Sep 21 2008
EXTENSIONS
a(8) moved to b-file by Hugo Pfoertner, Aug 30 2020
STATUS
approved