login
A144781
Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 8.
15
8, 57, 3193, 10192057, 103878015699193, 10790642145601683494645152057, 116437957914435303575899742229333045108448631998006179193, 13557798043283806950297045269968250387897834581711367551819275131055206893868524458302302046950954641412419952057
OFFSET
1,1
LINKS
Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
FORMULA
a(n) ~ c^(2^n) where is c is 2.74167747444233776776... (A144805).
MATHEMATICA
a = {}; k = 8; Do[AppendTo[a, k]; k = k^2 - k + 1, {n, 1, 10}]; a
NestList[#^2-#+1&, 8, 10] (* Harvey P. Dale, Jan 29 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Sep 21 2008
STATUS
approved