login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144779 Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 5. 16
5, 21, 421, 176821, 31265489221, 977530816197201697621, 955566496615167328821993756200407115362021, 913107329453384594090655605142589591944556891901674138343716072975722193082773842421 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..8.

Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.

Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.

FORMULA

a(n) = (2.1279959074641070545773519481404987838094409275546202338776144...)^(2^n).

a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 5.

EXAMPLE

a(0) = 4, a(1) = 4+1 = 5, a(2) = 4*5+1 = 21, a(3) = 4*5*21+1 = 421, a(4) = 4*5*21*421+1 = 176821, ... - Philippe Deléham, Apr 19 2013

MATHEMATICA

a = {}; k = 5; Do[AppendTo[a, k]; k = k^2 - k + 1, {n, 1, 10}]; a (* Artur Jasinski, Sep 21 2008 *)

NestList[#^2-#+1&, 5, 8] (* Harvey P. Dale, Jan 17 2012 *)

CROSSREFS

Cf. A000058, A082732, A144780, A144781, A144782, A144783, A144784, A144785, A144786, A144787, A144788.

Sequence in context: A009732 A009758 A143503 * A193324 A220002 A156860

Adjacent sequences:  A144776 A144777 A144778 * A144780 A144781 A144782

KEYWORD

nonn

AUTHOR

Artur Jasinski, Sep 21 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 09:03 EDT 2020. Contains 337298 sequences. (Running on oeis4.)