login
A120107
a(n) = Sum_{k=0..floor(n/2)} lcm(1,...,2*(n-k)+2)/lcm(1,...,2*k+2).
3
1, 6, 31, 425, 1331, 14084, 182533, 390855, 6192220, 117429752, 136000866, 2700408581, 13835919839, 42477252404, 1171690228133, 72397239805085, 84274330442804, 86644937313210, 2686078920033439, 3119346038772923
OFFSET
0,2
COMMENTS
Diagonal sums of number triangle A120101.
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} A120105(n-k, k). - G. C. Greubel, May 04 2023
MATHEMATICA
A120105[n_, k_]:= LCM@@Range[2*n+2]/(LCM@@Range[2*k+2]);
A120107[n_]:= Sum[A120105[n-k, k], {k, 0, Floor[n/2]}];
Table[A120107[n], {n, 0, 50}] (* G. C. Greubel, May 04 2023 *)
PROG
(GAP) List([0..20], n->Sum([0..Int(n/2)], k->Lcm(List([1..2*(n-k)+2], i->i))/Lcm(List([1..2*k+2], i->i)))); # Muniru A Asiru, Mar 03 2019
(PARI) a(n) = sum(k=0, n\2, lcm([1..2*(n-k)+2])/lcm([1..2*k+2])); \\ Michel Marcus, Mar 04 2019
(Magma)
A120105:= func< n, k | Lcm([1..2*n+2])/Lcm([1..2*k+2]) >;
[(&+[A120105(n-k, k): k in [0..Floor(n/2)]]): n in [0..50]]; // G. C. Greubel, May 04 2023
(SageMath)
def f(n): return lcm(range(1, 2*n+3))
def A120107(n):
return sum(f(n-k)/f(k) for k in range(1+(n//2)))
[A120107(n) for n in range(51)] # G. C. Greubel, May 04 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 09 2006
STATUS
approved