login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144576
E.g.f.: exp(1-sqrt(1-2*x-4*x^2)).
2
1, 1, 6, 31, 301, 3426, 51751, 926731, 19691106, 479961901, 13256384851, 408621822126, 13915350562081, 518741273626681, 21013220503491126, 919071064063596151, 43167975952565245501, 2167078807061679282306, 115795155400715170458631, 6561750899663711363984851
OFFSET
0,3
LINKS
FORMULA
a(n) ~ sqrt(5-sqrt(5))*(1+sqrt(5))^n*n^n/(2*n*exp(n-1)). - Vaclav Kotesovec, Jun 26 2013
D-finite with recurrence: a(n) +(-2*n+3)*a(n-1) +(-4*n^2+16*n-13)*a(n-2) +4*(-2*n+3)*a(n-3) -16*(n-1)*(n-3)*a(n-4)=0. - R. J. Mathar, Jan 23 2020
MAPLE
f:= gfun:-rectoproc({a(n+5) = 64*(n+3)*(n+2)*(n+1)*a(n)+48*(n+3)*(n+2)*a(n+1)+4*(n+3)*(4*n^2+12*n+11)*a(n+2)+(12*n^2+60*n+73)*a(n+3)-(2*n+1)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 6, a(3) = 31, a(4) = 301}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Dec 31 2019
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[1-Sqrt[1-2x-4x^2]], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Apr 30 2012 *)
CROSSREFS
Sequence in context: A208594 A318539 A221514 * A120107 A015462 A006115
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 07 2009
STATUS
approved