|
|
A144578
|
|
Denominators of expansion of exp(1-sqrt(1-x-2*x^2)).
|
|
2
|
|
|
1, 2, 4, 48, 384, 1920, 46080, 129024, 1032192, 185794560, 3715891200, 40874803200, 78479622144, 10202350878720, 64924051046400, 42849873690624000, 1371195958099968000, 4662066257539891200, 335668770542872166400, 5797915127558701056000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 0..404
|
|
FORMULA
|
A144577/A144578 is D-finite with recurrence 64*b(n) + 48*b(n+1) + (32*n^2 + 96*n + 76)*b(n+2) + (24*n^2 + 120*n + 145)*b(n+3) + (-12*n^2 - 66*n - 72)*b(n+4) + (-4*n^2 - 36*n - 80)*b(n+5)=0. - Robert Israel, Dec 17 2020
|
|
EXAMPLE
|
1 + (1/2)*x + (5/4)*x^2 + (55/48)*x^3 + (757/384)*x^4 + (4973/1920)*x^5 + (...
|
|
MAPLE
|
f:= gfun:-rectoproc({64*a(n) + 48*a(n + 1) + (32*n^2 + 96*n + 76)*a(n + 2) + (24*n^2 + 120*n + 145)*a(n + 3) + (-12*n^2 - 66*n - 72)*a(n + 4) + (-4*n^2 - 36*n - 80)*a(n + 5), a(0) = 1, a(1) = 1/2, a(2) = 5/4, a(3) = 55/48, a(4) = 757/384}, a(n), remember):
map(denom@f, [$0..30]); # Robert Israel, Dec 17 2020
|
|
CROSSREFS
|
Cf. A144577.
Sequence in context: A212429 A298903 A144580 * A143968 A308665 A097424
Adjacent sequences: A144575 A144576 A144577 * A144579 A144580 A144581
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
N. J. A. Sloane, Jan 07 2009
|
|
STATUS
|
approved
|
|
|
|