login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120106
a(n) = Sum_{k=0..n} lcm(1..2n+2)/lcm(1..2k+2).
4
1, 7, 36, 505, 1516, 16677, 216802, 433605, 7371286, 140054435, 140054436, 3221252029, 16106260146, 48318780439, 1401244632732, 86877167229385, 86877167229386, 86877167229387, 3214455187487320, 3214455187487321
OFFSET
0,2
LINKS
EXAMPLE
a(2) = lcm(1,2,3,4,5,6)*(1/lcm(1,2) + 1/lcm(1,2,3,4) + 1/lcm(1,2,3,4,5,6)) = 60 (1/2 + 1/12 + 1/60) = 60 * 3/5 = 36. - Bernard Schott, Feb 27 2019
MATHEMATICA
Table[Sum[(LCM@@Range[2n+2])/LCM@@Range[2k+2], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Mar 25 2012 *)
PROG
(GAP) List([0..20], n-> Sum([0..n], k-> Lcm(List([1..2*n+2], i->i) )/Lcm(List([1..2*k+2], i->i)))); # Muniru A Asiru, Feb 26 2019
(Sage) [sum(lcm(range(1, 2*n+3))/lcm(range(1, 2*k+3)) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Feb 26 2019
(Magma) [(&+[ LCM([j: j in [1..2*n+2]])/LCM([j: j in [1..2*k+2]]): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Feb 26 2019
(PARI) lcv(n) = lcm(vector(2*n+2, j, j));
a(n) = lcv(n)*sum(k=0, n, 1/lcv(k)); \\ Michel Marcus, Feb 27 2019
CROSSREFS
Row sums of number triangle A120101.
Sequence in context: A331719 A020085 A356076 * A240274 A129737 A176544
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 09 2006
STATUS
approved