login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279841
E.g.f. C(x) satisfies: C(x)^2 + 2*S(x)^2 = 1 such that S'(x) = C(x)^2 - S(x)*C(x) and C'(x) = 2*S(x)^2 - 2*S(x)*C(x), where S(x) is described by A279842.
1
1, 0, -2, 6, 6, -150, 522, 3654, -53226, 104490, 4132458, -47627514, -114714954, 8856035370, -75897566838, -1028068746426, 31770904056534, -135504089273430, -8135851530983382, 169470347331164166, 532060336564506486, -82392155996494676310, 1171058783000050544202, 21934887486351381588294, -1082420392535043092192106, 7667454997532070585239850, 570833713563794519922918378
OFFSET
0,3
FORMULA
E.g.f. C = C(x) and related series S = S(x) satisfy:
(1) C^2 + 2*S^2 = 1.
(2) S' = C*(C - S).
(3) C' = 2*S*(S - C).
(4) C*C' + 2*S*S' = 0.
(5) C'^2 + 2*S'^2 = 2*(C - S)^2.
(6) C' + S' = 1 - 3*C*S.
(7) S = 1+x - C - Integral 3*S*C dx.
EXAMPLE
E.g.f.: C(x) = 1 - 2*x^2/2! + 6*x^3/3! + 6*x^4/4! - 150*x^5/5! + 522*x^6/6! + 3654*x^7/7! - 53226*x^8/8! + 104490*x^9/9! + 4132458*x^10/10! - 47627514*x^11/11! - 114714954*x^12/12! + 8856035370*x^13/13! - 75897566838*x^14/14! - 1028068746426*x^15/15! + 31770904056534*x^16/16! - 135504089273430*x^17/17! - 8135851530983382*x^18/18! + 169470347331164166*x^19/19! + 532060336564506486*x^20/20! +...
where C(x) and related series S(x) satisfy:
(1) C(x)^2 + 2*S(x)^2 = 1,
(2) S'(x) = C(x)^2 - S(x)*C(x), and
(3) C'(x) = 2*S(x)^2 - 2*S(x)*C(x).
The series S(x) begins:
S(x) = x - x^2/2! - 3*x^3/3! + 21*x^4/4! - 21*x^5/5! - 549*x^6/6! + 3933*x^7/7! + 7029*x^8/8! - 342549*x^9/9! + 2039499*x^10/10! + 21325437*x^11/11! - 479621979*x^12/12! + 1462333419*x^13/13! + 74172750651*x^14/14! - 1192395763107*x^15/15! - 3407789304171*x^16/16! + 380952336378411*x^17/17! - 4313364309242901*x^18/18! - 70292105696209923*x^19/19! + 2800422902218340421*x^20/20! +...
The squares of the series begin:
C(x)^2 = 1 - 4*x^2/2! + 12*x^3/3! + 36*x^4/4! - 540*x^5/5! + 1404*x^6/6! + 22428*x^7/7! - 263196*x^8/8! - 17820*x^9/9! + 30092796*x^10/10! - 281509668*x^11/11! - 1977122844*x^12/12! + 74747689380*x^13/13! - 452240926596*x^14/14! - 12862160888292*x^15/15! +...
S(x)^2 = 2*x^2/2! - 6*x^3/3! - 18*x^4/4! + 270*x^5/5! - 702*x^6/6! - 11214*x^7/7! + 131598*x^8/8! + 8910*x^9/9! - 15046398*x^10/10! + 140754834*x^11/11! + 988561422*x^12/12! - 37373844690*x^13/13! + 226120463298*x^14/14! + 6431080444146*x^15/15! +...
Also, we have C'(x) + S'(x) = 1 - 3*C(x)*S(x), where
C(x)*S(x) = x - x^2/2! - 9*x^3/3! + 57*x^4/4! + 9*x^5/5! - 2529*x^6/6! + 15399*x^7/7! + 79353*x^8/8! - 2057319*x^9/9! + 8767359*x^10/10! + 198112311*x^11/11! - 3439456263*x^12/12! + 574938729*x^13/13! + 740154836511*x^14/14! - 9454371584121*x^15/15! +...
PROG
(PARI) {a(n) = my(C=1, S=x); for(i=0, n, S = 1+x - C - intformal(3*S*C + x*O(x^n)); C = sqrt(1 - 2*S^2); ); n!*polcoeff(C, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A279842.
Sequence in context: A367676 A130726 A369119 * A219195 A212223 A158915
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 04 2017
STATUS
approved