Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Jan 04 2017 18:29:06
%S 1,0,-2,6,6,-150,522,3654,-53226,104490,4132458,-47627514,-114714954,
%T 8856035370,-75897566838,-1028068746426,31770904056534,
%U -135504089273430,-8135851530983382,169470347331164166,532060336564506486,-82392155996494676310,1171058783000050544202,21934887486351381588294,-1082420392535043092192106,7667454997532070585239850,570833713563794519922918378
%N E.g.f. C(x) satisfies: C(x)^2 + 2*S(x)^2 = 1 such that S'(x) = C(x)^2 - S(x)*C(x) and C'(x) = 2*S(x)^2 - 2*S(x)*C(x), where S(x) is described by A279842.
%F E.g.f. C = C(x) and related series S = S(x) satisfy:
%F (1) C^2 + 2*S^2 = 1.
%F (2) S' = C*(C - S).
%F (3) C' = 2*S*(S - C).
%F (4) C*C' + 2*S*S' = 0.
%F (5) C'^2 + 2*S'^2 = 2*(C - S)^2.
%F (6) C' + S' = 1 - 3*C*S.
%F (7) S = 1+x - C - Integral 3*S*C dx.
%e E.g.f.: C(x) = 1 - 2*x^2/2! + 6*x^3/3! + 6*x^4/4! - 150*x^5/5! + 522*x^6/6! + 3654*x^7/7! - 53226*x^8/8! + 104490*x^9/9! + 4132458*x^10/10! - 47627514*x^11/11! - 114714954*x^12/12! + 8856035370*x^13/13! - 75897566838*x^14/14! - 1028068746426*x^15/15! + 31770904056534*x^16/16! - 135504089273430*x^17/17! - 8135851530983382*x^18/18! + 169470347331164166*x^19/19! + 532060336564506486*x^20/20! +...
%e where C(x) and related series S(x) satisfy:
%e (1) C(x)^2 + 2*S(x)^2 = 1,
%e (2) S'(x) = C(x)^2 - S(x)*C(x), and
%e (3) C'(x) = 2*S(x)^2 - 2*S(x)*C(x).
%e The series S(x) begins:
%e S(x) = x - x^2/2! - 3*x^3/3! + 21*x^4/4! - 21*x^5/5! - 549*x^6/6! + 3933*x^7/7! + 7029*x^8/8! - 342549*x^9/9! + 2039499*x^10/10! + 21325437*x^11/11! - 479621979*x^12/12! + 1462333419*x^13/13! + 74172750651*x^14/14! - 1192395763107*x^15/15! - 3407789304171*x^16/16! + 380952336378411*x^17/17! - 4313364309242901*x^18/18! - 70292105696209923*x^19/19! + 2800422902218340421*x^20/20! +...
%e The squares of the series begin:
%e C(x)^2 = 1 - 4*x^2/2! + 12*x^3/3! + 36*x^4/4! - 540*x^5/5! + 1404*x^6/6! + 22428*x^7/7! - 263196*x^8/8! - 17820*x^9/9! + 30092796*x^10/10! - 281509668*x^11/11! - 1977122844*x^12/12! + 74747689380*x^13/13! - 452240926596*x^14/14! - 12862160888292*x^15/15! +...
%e S(x)^2 = 2*x^2/2! - 6*x^3/3! - 18*x^4/4! + 270*x^5/5! - 702*x^6/6! - 11214*x^7/7! + 131598*x^8/8! + 8910*x^9/9! - 15046398*x^10/10! + 140754834*x^11/11! + 988561422*x^12/12! - 37373844690*x^13/13! + 226120463298*x^14/14! + 6431080444146*x^15/15! +...
%e Also, we have C'(x) + S'(x) = 1 - 3*C(x)*S(x), where
%e C(x)*S(x) = x - x^2/2! - 9*x^3/3! + 57*x^4/4! + 9*x^5/5! - 2529*x^6/6! + 15399*x^7/7! + 79353*x^8/8! - 2057319*x^9/9! + 8767359*x^10/10! + 198112311*x^11/11! - 3439456263*x^12/12! + 574938729*x^13/13! + 740154836511*x^14/14! - 9454371584121*x^15/15! +...
%o (PARI) {a(n) = my(C=1,S=x); for(i=0,n, S = 1+x - C - intformal(3*S*C + x*O(x^n)); C = sqrt(1 - 2*S^2); ); n!*polcoeff(C,n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A279842.
%K sign
%O 0,3
%A _Paul D. Hanna_, Jan 04 2017