login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280792 E.g.f. A(x) satisfies: A( arcsin( A( arcsinh(x) ) ) ) = x. 6
1, -4, -304, 648896, 2650020096, -142483330376704, 24311838501965418496, -17572131142184492046434304, 31550058162566932127305417424896, -123841868587916789535717370523560443904, 969729634851676570691527174556498457233719296, -14068736567241332813708145418894026558391075423125504, 356436464229966658550949874743523835716465340767523041181696, -15023108679681039882374036580197265042861509571919315150655773999104 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The series reversion of the e.g.f. is defined by A280790.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..50

FORMULA

E.g.f. A(x) = Sum_{n>=1} a(n) * x^(4*n-3)/(4*n-3)! satisfies:

(1) A( arcsin( A( arcsinh(x) ) ) ) = x.

(2) A( arcsinh( A( arcsin(x) ) ) ) = x.

(3) arcsin( A( arcsinh( A(x) ) ) ) = x.

(4) arcsinh( A( arcsin( A(x) ) ) ) = x.

(5) A( arcsinh(A(x)) ) = sin(x).

(6) A( arcsin(A(x)) ) = sinh(x).

(7) Series_Reversion( A(x) ) = arcsin( A(arcsinh(x)) ) = arcsinh( A(arcsin(x)) ).

EXAMPLE

E.g.f.: A(x) = x - 4*x^5/5! - 304*x^9/9! + 648896*x^13/13! + 2650020096*x^17/17! - 142483330376704*x^21/21! + 24311838501965418496*x^25/25! - 17572131142184492046434304*x^29/29! + 31550058162566932127305417424896*x^33/33! - 123841868587916789535717370523560443904*x^37/37! + 969729634851676570691527174556498457233719296*x^41/41! + ...

such that A( arcsin( A( arcsinh(x) ) ) ) = x.

Note that A( A( arcsin( arcsinh(x) ) ) ) is NOT equal to x; the composition of these functions is not commutative.

The e.g.f. as a series with reduced fractional coefficients begins:

A(x) = x - 1/30*x^5 - 19/22680*x^9 + 10139/97297200*x^13 + 3450547/463134672000*x^17 - 139143877321/49893498214560000*x^21 + 5935507446768901/3786916514485104000000*x^25 - 4413653374109964767/2220816151494708768000000*x^29 + ...

RELATED SERIES.

A( arcsinh(x) ) = x - x^3/3! + 5*x^5/5! - 85*x^7/7! + 2825*x^9/9! - 151625*x^11/11! + 12098125*x^13/13! - 1339476125*x^15/15! + 196410020625*x^17/17! - 37062144900625*x^19/19! + 8772471210303125*x^21/21! - 2519410212081953125*x^23/23! + 854580849916226265625*x^25/25! + ...

The series reversion of A( arcsinh(x) ) equals A( arcsin(x) ), which begins:

A( arcsin(x) ) = x + x^3/3! + 5*x^5/5! + 85*x^7/7! + 2825*x^9/9! + 151625*x^11/11! + 12098125*x^13/13! + 1339476125*x^15/15! + ... + A318635(n)*x^(2*n-1)/(2*n-1)! + ...

arcsinh( A(x) ) = x - x^3/3! + 5*x^5/5! - 141*x^7/7! + 6185*x^9/9! - 482681*x^11/11! + 55181165*x^13/13! - 8650849221*x^15/15! + 1806577140945*x^17/17! - 482615036315761*x^19/19! + 160833575943581525*x^21/21! - 65507016886932658301*x^23/23! + 32006289578900322278905*x^25/25! + ...

The series reversion of arcsinh( A(x) ) equals arcsin( A(x) ), which begins:

arcsin( A(x) ) = x + x^3/3! + 5*x^5/5! + 141*x^7/7! + 6185*x^9/9! + 482681*x^11/11! + 55181165*x^13/13! + 8650849221*x^15/15! + ...

The series reversion of A(x) begins:

Series_Reversion( A(x) ) = x + 4*x^5/5! + 2320*x^9/9! + 9857600*x^13/13! + 159122080000*x^17/17! + 7098806416000000*x^21/21! + 686863244097538560000*x^25/25! +...+ A280790(n)*x^(4*n-3)/(4*n-3)! +...

PROG

(PARI) {a(n) = my(A=x +x*O(x^(4*n+1))); for(i=1, 2*n, A = A + (x - subst( asin(A) , x, asinh(A) ) )/2; H=A ); (4*n-3)!*polcoeff(A, 4*n-3)}

for(n=1, 20, print1(a(n), ", "))

CROSSREFS

Cf. A280790, A280791, A280793, A318635.

Sequence in context: A001537 A279576 A201979 * A027512 A153220 A227673

Adjacent sequences:  A280789 A280790 A280791 * A280793 A280794 A280795

KEYWORD

sign

AUTHOR

Paul D. Hanna, Jan 09 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 12:33 EST 2019. Contains 329916 sequences. (Running on oeis4.)