login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280792
E.g.f. A(x) satisfies: A( arcsin( A( arcsinh(x) ) ) ) = x.
6
1, -4, -304, 648896, 2650020096, -142483330376704, 24311838501965418496, -17572131142184492046434304, 31550058162566932127305417424896, -123841868587916789535717370523560443904, 969729634851676570691527174556498457233719296, -14068736567241332813708145418894026558391075423125504, 356436464229966658550949874743523835716465340767523041181696, -15023108679681039882374036580197265042861509571919315150655773999104
OFFSET
1,2
COMMENTS
The series reversion of the e.g.f. is defined by A280790.
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=1} a(n) * x^(4*n-3)/(4*n-3)! satisfies:
(1) A( arcsin( A( arcsinh(x) ) ) ) = x.
(2) A( arcsinh( A( arcsin(x) ) ) ) = x.
(3) arcsin( A( arcsinh( A(x) ) ) ) = x.
(4) arcsinh( A( arcsin( A(x) ) ) ) = x.
(5) A( arcsinh(A(x)) ) = sin(x).
(6) A( arcsin(A(x)) ) = sinh(x).
(7) Series_Reversion( A(x) ) = arcsin( A(arcsinh(x)) ) = arcsinh( A(arcsin(x)) ).
EXAMPLE
E.g.f.: A(x) = x - 4*x^5/5! - 304*x^9/9! + 648896*x^13/13! + 2650020096*x^17/17! - 142483330376704*x^21/21! + 24311838501965418496*x^25/25! - 17572131142184492046434304*x^29/29! + 31550058162566932127305417424896*x^33/33! - 123841868587916789535717370523560443904*x^37/37! + 969729634851676570691527174556498457233719296*x^41/41! + ...
such that A( arcsin( A( arcsinh(x) ) ) ) = x.
Note that A( A( arcsin( arcsinh(x) ) ) ) is NOT equal to x; the composition of these functions is not commutative.
The e.g.f. as a series with reduced fractional coefficients begins:
A(x) = x - 1/30*x^5 - 19/22680*x^9 + 10139/97297200*x^13 + 3450547/463134672000*x^17 - 139143877321/49893498214560000*x^21 + 5935507446768901/3786916514485104000000*x^25 - 4413653374109964767/2220816151494708768000000*x^29 + ...
RELATED SERIES.
A( arcsinh(x) ) = x - x^3/3! + 5*x^5/5! - 85*x^7/7! + 2825*x^9/9! - 151625*x^11/11! + 12098125*x^13/13! - 1339476125*x^15/15! + 196410020625*x^17/17! - 37062144900625*x^19/19! + 8772471210303125*x^21/21! - 2519410212081953125*x^23/23! + 854580849916226265625*x^25/25! + ...
The series reversion of A( arcsinh(x) ) equals A( arcsin(x) ), which begins:
A( arcsin(x) ) = x + x^3/3! + 5*x^5/5! + 85*x^7/7! + 2825*x^9/9! + 151625*x^11/11! + 12098125*x^13/13! + 1339476125*x^15/15! + ... + A318635(n)*x^(2*n-1)/(2*n-1)! + ...
arcsinh( A(x) ) = x - x^3/3! + 5*x^5/5! - 141*x^7/7! + 6185*x^9/9! - 482681*x^11/11! + 55181165*x^13/13! - 8650849221*x^15/15! + 1806577140945*x^17/17! - 482615036315761*x^19/19! + 160833575943581525*x^21/21! - 65507016886932658301*x^23/23! + 32006289578900322278905*x^25/25! + ...
The series reversion of arcsinh( A(x) ) equals arcsin( A(x) ), which begins:
arcsin( A(x) ) = x + x^3/3! + 5*x^5/5! + 141*x^7/7! + 6185*x^9/9! + 482681*x^11/11! + 55181165*x^13/13! + 8650849221*x^15/15! + ...
The series reversion of A(x) begins:
Series_Reversion( A(x) ) = x + 4*x^5/5! + 2320*x^9/9! + 9857600*x^13/13! + 159122080000*x^17/17! + 7098806416000000*x^21/21! + 686863244097538560000*x^25/25! +...+ A280790(n)*x^(4*n-3)/(4*n-3)! +...
PROG
(PARI) {a(n) = my(A=x +x*O(x^(4*n+1))); for(i=1, 2*n, A = A + (x - subst( asin(A) , x, asinh(A) ) )/2; H=A ); (4*n-3)!*polcoeff(A, 4*n-3)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 09 2017
STATUS
approved