The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280791 E.g.f. A(x) satisfies: A( tan( A( tanh(x) ) ) ) = x. 6
 1, 4, 400, 5364800, -367374176000, 143449000888960000, -181899009894595069440000, 627436681283593072503040000000, -5107564746905573153364013194240000000, 88171417366157389105207649269976371200000000, -2969272543655823399308577388625291953035264000000000, 182441297602875422577046590572630481727347923066880000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The series reversion of the e.g.f. is defined by A280793. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..50 FORMULA E.g.f. A(x) = Sum_{n>=1} a(n) * x^(4*n-3)/(4*n-3)! satisfies: (1) A( tan( A( tanh(x) ) ) ) = x. (2) A( tanh( A( tan(x) ) ) ) = x. (3) tan( A( tanh( A(x) ) ) ) = x. (4) tanh( A( tan( A(x) ) ) ) = x. (5) A( tanh(A(x)) ) = arctan(x). (6) A( tan(A(x)) ) = arctanh(x). (7) Series_Reversion( A(x) ) = tan( A(tanh(x)) ) = tanh( A(tan(x)) ). EXAMPLE E.g.f.: A(x) = x + 4*x^5/5! + 400*x^9/9! + 5364800*x^13/13! - 367374176000*x^17/17! + 143449000888960000*x^21/21! - 181899009894595069440000*x^25/25! + 627436681283593072503040000000*x^29/29! - 5107564746905573153364013194240000000*x^33/33! + 88171417366157389105207649269976371200000000*x^37/37! - 2969272543655823399308577388625291953035264000000000*x^41/41! +... such that A( tan( A( tanh(x) ) ) ) = x. Note that A( A( tan( tanh(x) ) ) ) is NOT equal to x; the composition of these functions is not commutative. The e.g.f. as a series with reduced fractional coefficients begins: A(x) = x + 1/30*x^5 + 5/4536*x^9 + 479/555984*x^13 - 883111/855017856*x^17 + 1014203909/361219896576*x^21 - 5103375762413/435183970636800*x^25 + 77553540368447155/1092875131729446912*x^29 +... RELATED SERIES. A( tanh(x) ) = x - 2*x^3/3! + 20*x^5/5! - 552*x^7/7! + 29840*x^9/9! - 2520352*x^11/11! + 302768960*x^13/13! - 51218036352*x^15/15! + 12015036698880*x^17/17! - 3457794697175552*x^19/19! + 1042442536703513600*x^21/21! - 437297928076611069952*x^23/23! + 444983819928674567557120*x^25/25! +... The series reversion of A( tanh(x) ) equals A( tan(x) ), which begins: A( tan(x) ) = x + 2*x^3/3! + 20*x^5/5! + 552*x^7/7! + 29840*x^9/9! + 2520352*x^11/11! + 302768960*x^13/13! +... tanh( A(x) ) = x - 2*x^3/3! + 20*x^5/5! - 440*x^7/7! + 16400*x^9/9! - 944800*x^11/11! + 82388800*x^13/13! - 9583600000*x^15/15! + 1041175200000*x^17/17! - 136472188736000*x^19/19! + 168221708270720000*x^21/21! - 77192574087699200000*x^23/23! - 152078345729585600000000*x^25/25! +... The series reversion of tanh( A(x) ) equals tan( A(x) ), which begins: tan( A(x) ) = x + 2*x^3/3! + 20*x^5/5! + 440*x^7/7! + 16400*x^9/9! + 944800*x^11/11! + 82388800*x^13/13! +... The series reversion of A(x) = tan(A(tanh(x))) = tanh(A(tan(x))), and begins: Series_Reversion( A(x) ) = x - 4*x^5/5! + 1616*x^9/9! - 10233664*x^13/13! + 605781862656*x^17/17! - 195074044306023424*x^21/21! + 226963189334487889924096*x^25/25! +...+ A280793(n)*x^(4*n-3)/(4*n-3)! +... PROG (PARI) {a(n) = my(A=x +x*O(x^(4*n+1))); for(i=1, 2*n, A = A + (x - subst( tan(A) , x, tanh(A) ) )/2; ); (4*n-3)!*polcoeff(A, 4*n-3)} for(n=1, 20, print1(a(n), ", ")) CROSSREFS Cf. A280790, A280792, A280793. Sequence in context: A349460 A158111 A259049 * A198709 A326209 A287965 Adjacent sequences: A280788 A280789 A280790 * A280792 A280793 A280794 KEYWORD sign AUTHOR Paul D. Hanna, Jan 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 18:13 EST 2022. Contains 358431 sequences. (Running on oeis4.)