

A259049


Number of selfcomplementary plane partitions in a (2n)cube.


1



1, 4, 400, 960400, 54218191104, 71410553858811024, 2186315392560559723530496, 1552832545847343203950118294425600, 25554649541466337940020968722797075170918400, 9736551559782513812975251884508283964266367033264640000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Odd cubes have no selfcomplementary plane partitions.


LINKS

Table of n, a(n) for n=0..9.
R. P. Stanley, Symmetries of Plane Partitions, J. Comb. Theory Ser. A 43 (1986), 103113.
P. J. Taylor, Counting distinct dimer hex tilings, Preprint, 2015.


FORMULA

a(n) = Product_{i=0..n1} i!^2 (i+2n)!^2 / (i+n)!^4.
a(n) = A008793(n)^2.


PROG

(PARI) a(n) = prod(i=0, n1, i!^2*(i+2*n)!^2 / (i+n)!^4) \\ Michel Marcus, Jun 18 2015


CROSSREFS

Cf. A008793.
Sequence in context: A202172 A349460 A158111 * A280791 A198709 A326209
Adjacent sequences: A259046 A259047 A259048 * A259050 A259051 A259052


KEYWORD

nonn,easy


AUTHOR

Peter J. Taylor, Jun 17 2015


STATUS

approved



