Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Feb 13 2016 17:40:02
%S 1,4,400,960400,54218191104,71410553858811024,
%T 2186315392560559723530496,1552832545847343203950118294425600,
%U 25554649541466337940020968722797075170918400,9736551559782513812975251884508283964266367033264640000
%N Number of self-complementary plane partitions in a (2n)-cube.
%C Odd cubes have no self-complementary plane partitions.
%H R. P. Stanley, <a href="http://dx.doi.org/10.1016/0097-3165(86)90028-2">Symmetries of Plane Partitions</a>, J. Comb. Theory Ser. A 43 (1986), 103-113.
%H P. J. Taylor, <a href="http://cheddarmonk.org/papers/distinct-dimer-hex-tilings.pdf">Counting distinct dimer hex tilings</a>, Preprint, 2015.
%F a(n) = Product_{i=0..n-1} i!^2 (i+2n)!^2 / (i+n)!^4.
%F a(n) = A008793(n)^2.
%o (PARI) a(n) = prod(i=0, n-1, i!^2*(i+2*n)!^2 / (i+n)!^4) \\ _Michel Marcus_, Jun 18 2015
%Y Cf. A008793.
%K nonn,easy
%O 0,2
%A _Peter J. Taylor_, Jun 17 2015