login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349460
Squares composed of digits {0,2,4}.
1
0, 4, 400, 40000, 2244004, 4000000, 42224004, 224400400, 400000000, 424442404, 4222400400, 22200404004, 22440040000, 40000000000, 42444240400, 422240040000, 2220040400400, 2244004000000, 4000000000000, 4024044024004, 4244424040000, 40244204444224, 42224004000000
OFFSET
1,2
COMMENTS
From Marius A. Burtea, Nov 18 2021: (Start)
The sequence is infinite because if m > 0 is a term, then 100*m is also a term.
Also, the squares of the numbers 20602, 2006002, 200060002, ..., (2*10^(2*k) + 6*10^k + 2), k >= 2, are 424442404, 4024044024004, 40024004400240004, 400024000440002400004, ... and have only the digits 0, 2 and 4 and are not divisible by 100. (End)
MATHEMATICA
Select[Range[0, 10^7, 2]^2, AllTrue[IntegerDigits[#], MemberQ[{0, 2, 4}, #1] &] &] (* Amiram Eldar, Nov 18 2021 *)
PROG
(C#)
for(ulong num = 0; num < 10000000; num++)
{
ulong sq = num * num;
string sq1 = sq + "";
bool p = true;
string un = "1356789";
for(int a = 0; a < un.Length; a++)
{
if(sq1.Contains(un[a]))
{
p = false;
}
}
if(p)
{
Console.Write(sq1 + ", ");
}
}
Console.WriteLine("done");
(Magma) [n : n in [s*s:s in [1..1500000]]|Set(Intseq(n)) subset {0, 2, 4}]; // Marius A. Burtea, Nov 18 2021
(Python)
from itertools import islice, count
def A349460(): return filter(lambda n: set(str(n)) <= {'0', '2', '4'}, (n*n for n in count(0)))
A349460_list = list(islice(A349460(), 20)) # Chai Wah Wu, Nov 19 2021
CROSSREFS
Subsequence of A000290 and A030098.
Sequence in context: A115049 A307929 A202172 * A158111 A259049 A280791
KEYWORD
nonn,base
AUTHOR
Daniel Blam, Nov 18 2021
STATUS
approved