login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259051
Triangle T(n,m) for the number of ways to put n stones into an m X n square grid such that each of the m rows contains at least one stone.
3
1, 1, 4, 1, 18, 27, 1, 68, 288, 256, 1, 250, 2250, 5000, 3125, 1, 922, 15795, 65880, 97200, 46656, 1, 3430, 105987, 739508, 1932805, 2117682, 823543, 1, 12868, 696864, 7653632, 31539200, 59179008, 51380224, 16777216, 1, 48618, 4540968, 75687696, 461828790, 1320099444, 1919564892, 1377495072, 387420489
OFFSET
1,3
COMMENTS
This is the triangle A258371(n, m)/binomial(n, m).
For the corresponding partition array see A258152.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..1830 (first 60 rows)
FORMULA
T(n, m) = sum over the A258152(n, k) entries corresponding to partitions of n with m parts; n >= 1, m = 1,2, ..., n.
T(n, m) = A258371(n, m)/binomial(n, m).
EXAMPLE
The triangle T(n, m) begins:
n\k 1 2 3 4 5 6 7
1: 1
2: 1 4
3: 1 18 27
4: 1 68 288 256
5: 1 250 2250 5000 3125
6: 1 922 15795 65880 97200 46656
7: 1 3430 105987 739508 1932805 2117682 823543
...
8: 1 12868 696864 7653632 31539200 59179008 51380224
16777216,
9: 1 48618 4540968 75687696 461828790 1320099444 1919564892 1377495072 387420489.
a(4, 2) = 68 from the sum 32 + 36 of the n=4 row of A258152 which belong to the partitions of 4 with m=2 parts, namely (1, 3) and (2, 2).
MATHEMATICA
T[n_, k_]:= Sum[Multinomial@@ (Last/@ Tally[e]) * Times@@ Binomial[n, e], {e, IntegerPartitions[n, {k}]}]; Flatten@ Table[ T[n, k], {n, 9}, {k, n}] (* Giovanni Resta, Jun 18 2015 *)
CROSSREFS
Sequence in context: A201201 A077102 A258152 * A192722 A300141 A057968
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Jun 18 2015
STATUS
approved