login
A259054
a(n) = 4*n^2 - 4*n + 19, n >= 1.
2
19, 27, 43, 67, 99, 139, 187, 243, 307, 379, 459, 547, 643, 747, 859, 979, 1107, 1243, 1387, 1539, 1699, 1867, 2043, 2227, 2419, 2619, 2827, 3043, 3267, 3499, 3739, 3987, 4243, 4507, 4779, 5059, 5347, 5643, 5947, 6259, 6579, 6907, 7243, 7587, 7939, 8299, 8667, 9043, 9427, 9819
OFFSET
1,1
COMMENTS
a(n) gives twice the inverse radius of the circles touching the large Arbelos (2/3,1/3) circle (radius 1) and the n-th and (n-1)-th circles of the counterclockwise Pappus chain.
For twice the curvatures (inverse radii) of the counterclockwise Pappus chain of the (2/3,1/3) arbelos see A114949, also for the MathWorld link to Pappus chain.
For the small curvatures touching the left circle of the (2/3,1/3) arbelos and the n-th and (n-1)-st circles of the counterclockwise Pappus chain see A259555.
The curvatures of the circles can be computed with Descartes' three (actually 5) circle theorem. See A259555 for links to Descartes' theorem.
FORMULA
a(n) = 4*n^2 - 4*n + 19, n >= 1.
O.g.f.: x*(19 - 30*x + 19*x^2)/(1 - x)^3.
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(4*x^2 + 19) - 19.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
MATHEMATICA
Array[4 #^2 - 4 # + 19 &, 40] (* Michael De Vlieger, Jul 02 2015 *)
LinearRecurrence[{3, -3, 1}, {19, 27, 43}, 40] (* Harvey P. Dale, May 17 2016 *)
PROG
(PARI) vector(60, n, 4*n^2 - 4*n + 19) \\ Michel Marcus, Jul 03 2015
CROSSREFS
Sequence in context: A032701 A226726 A006626 * A029510 A029537 A053592
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Terms a(37) and beyond from Andrew Howroyd, May 01 2020
STATUS
approved