login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259555
a(n) = 2*n^2 - 2*n + 17.
5
17, 21, 29, 41, 57, 77, 101, 129, 161, 197, 237, 281, 329, 381, 437, 497, 561, 629, 701, 777, 857, 941, 1029, 1121, 1217, 1317, 1421, 1529, 1641, 1757, 1877, 2001, 2129, 2261, 2397, 2537, 2681, 2829, 2981, 3137, 3297, 3461, 3629, 3801, 3977, 4157, 4341, 4529
OFFSET
1,1
COMMENTS
a(n) is the curvature of the n-th touching circle in the area below the counterclockwise Pappus chain and the left semicircle of the arbelos with radii r0 = 2/3, r1 = 1/3. See illustration in the links.
LINKS
Eric Weisstein's World of Mathematics, Descartes Circle theorem.
Eric Weisstein's World of Mathematics, Pappus chain.
Wikipedia, Descartes' Theorem.
FORMULA
a(n) = 2*n^2 - 2*n + 17.
Descartes three circle theorem: a(n) = 3/2 + c(n) + c(n-1) + 2*sqrt(3*(c(n)+c(n-1))/2 + c(n)*c(n-1)), with c(n) = A114949(n)/2 = (n^2 + 6)/2, producing 2*n^2 - 2*n + 17. - Wolfdieter Lang, Jun 30 2015
From Colin Barker, Jul 01 2015: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -x*(17*x^2 - 30*x + 17)/(x-1)^3. (End)
E.g.f.: exp(x)*(2*x^2 + 17) - 17. - Elmo R. Oliveira, Nov 17 2024
MATHEMATICA
Table[2*n^2 - 2*n + 17, {n, 50}] (* Wesley Ivan Hurt, Feb 04 2017 *)
LinearRecurrence[{3, -3, 1}, {17, 21, 29}, 50] (* Harvey P. Dale, Apr 28 2017 *)
PROG
(PARI) a(n)=2*n^2-2*n+17
for (n=1, 100, print1(a(n), ", "))
(PARI) Vec(-x*(17*x^2-30*x+17)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jul 01 2015
CROSSREFS
Cf. A114949, A242412 (for r0 = 1/2 = r1).
Sequence in context: A188200 A376026 A060875 * A138600 A050845 A219396
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Jun 30 2015
EXTENSIONS
Edited by Wolfdieter Lang, Jun 30 2015
STATUS
approved