login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259554
a(n) = Sum_{i=0..n} (2^(i)*(-1)^(i+n)*C(n,i)*C(2*n+i-1,n-1)).
3
1, 7, 52, 403, 3206, 25954, 212738, 1760035, 14666470, 122920642, 1035046816, 8749594462, 74207078908, 631140253072, 5381022869822, 45975731083555, 393556869530630, 3374504760608026, 28977403637496104, 249167023897718138
OFFSET
1,2
LINKS
V. V. Kruchinin and D. V. Kruchinin, A Generating Function for the Diagonal T_{2n,n} in Triangles, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.6.
FORMULA
G.f.: A(x) = x*B(x)'/B(x), where B(x) is g.f. of A003168.
Recurrence: 4*n*(2*n-1)*(17*n^2 - 51*n + 38)*a(n) = (1207*n^4 - 4828*n^3 + 6659*n^2 - 3662*n + 672)*a(n-1) - 2*(n-2)*(2*n-3)*(17*n^2 - 17*n + 4)*a(n-2). - Vaclav Kotesovec, Jul 01 2015
a(n) ~ (71+17*sqrt(17))^n / (17^(1/4) * sqrt(Pi*n) * 2^(4*n+1)). - Vaclav Kotesovec, Jul 01 2015
a(n) = (1/2)*Sum_{k = 0..n} binomial(n-1,n-k)*binomial(2*n+k-1,k). - Vladimir Kruchinin, Oct 07 2016
a(n) = n*hypergeom([2*n+1, -n+1], [2], -1). - Peter Luschny, Oct 07 2016
From Peter Bala, Nov 08 2022: (Start)
a(n) = (1/2)*[x^n] ( (1 - x)/(1 - 2*x) )^(2*n). Cf. A002002(n) = [x^n] ( (1 - x)/(1 - 2*x) )^n.
a(n) = (1/2)*Sum_{k = 0..n} (-1)^(n-k)*2^k*binomial(2*n,n-k)*binomial(2*n+k-1,k).
a(n) = (1/2)*(-1)^n*binomial(2*n,n)*hypergeom( [-n, 2*n], [n+1], 2).
The Gauss congruences hold: a(n*p^r) == a(n^p^(r-1)) (mod p^r) for all primes p >= 3 and all positive integers n and r. (End)
MAPLE
a := n -> n*hypergeom([2*n+1, -n+1], [2], -1):
seq(simplify(a(n)), n=1..9); # Peter Luschny, Oct 07 2016
MATHEMATICA
Table[Sum[2^i * (-1)^(i+n) * Binomial[n, i] * Binomial[2*n+i-1, n-1], {i, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 01 2015 *)
PROG
(Maxima) a(n):=sum(2^(i)*(-1)^(i+n)*binomial(n, i)*binomial(2*n+i-1, n-1), i, 0, n);
(PARI) a(n) = sum(i=0, n, 2^i*(-1)^(i+n)*binomial(n, i)*binomial(2*n+i-1, n-1)); \\ Michel Marcus, Jul 02 2015
CROSSREFS
Sequence in context: A246513 A015559 A097180 * A370027 A147962 A329012
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Jun 30 2015
STATUS
approved