|
|
A015559
|
|
Expansion of x/(1 - 7*x - 3*x^2).
|
|
3
|
|
|
0, 1, 7, 52, 385, 2851, 21112, 156337, 1157695, 8572876, 63483217, 470101147, 3481157680, 25778407201, 190892323447, 1413581485732, 10467747370465, 77514976050451, 574008074464552, 4250601449403217, 31476234369216175
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 7*a(n-1) + 3*a(n-2).
a(n) = (1/61)*sqrt(61)*(7/2 + (1/2)*sqrt(61))^n - (1/61)*(7/2 - (1/2)*sqrt(61))^n*sqrt(61), with n >= 0. - Paolo P. Lava, Jun 25 2008
|
|
MATHEMATICA
|
CoefficientList[Series[x/(1-7x-3x^2), {x, 0, 30}], x] (* Harvey P. Dale, Nov 12 2017 *)
|
|
PROG
|
(Sage) [lucas_number1(n, 7, -3) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) [n le 2 select n-1 else 7*Self(n-1) + 3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2012
(PARI) x='x+O('x^30); concat([0], Vec(x/(1-7*x-3*x^2))) \\ G. C. Greubel, Dec 30 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|