login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097180
Row sums of triangle A097179, in which the n-th row polynomial R_n(y) is formed from the initial (n+1) terms of g.f. A077860(y)^(n+1), where R_n(1/2) = 4^n for all n>=0.
2
1, 7, 52, 395, 3036, 23506, 182904, 1428387, 11185900, 87789702, 690212744, 5434455182, 42841215704, 338081920260, 2670388231152, 21109070463267, 166980248599884, 1321686452484286, 10467203182893800, 82936871755938970
OFFSET
0,2
LINKS
FORMULA
G.f.: A(x) = 2/((1-8*x) + (1-8*x)^(3/4)).
Conjecture: n*(n-1)*(n+1)*a(n) -12*n*(2*n-1)*(n-1)*a(n-1) +12*(n-1) * (16*n^2-32*n+17)*a(n-2) -16*(4*n-5)*(4*n-7)*(2*n-3)*a(n-3) = 0. - R. J. Mathar, Nov 16 2012
a(n) ~ 2^(3*n+1) / (Gamma(3/4)*n^(1/4)) * (1 - Gamma(3/4) / (n^(1/4) * sqrt(Pi))). - Vaclav Kotesovec, Feb 04 2014
MAPLE
seq(coeff(series(2/((1-8*x) + (1-8*x)^(3/4)), x, n+1), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
MATHEMATICA
CoefficientList[Series[2/((1-8*x) + (1-8*x)^(3/4)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
PROG
(PARI) a(n)=polcoeff(2/((1-8*x)+(1-8*x+x*O(x^n))^(3/4)), n, x)
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 2/((1-8*x) + (1-8*x)^(3/4)) )); // G. C. Greubel, Sep 17 2019
(Sage)
def A097180_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P(2/((1-8*x) + (1-8*x)^(3/4))).list()
A097180_list(20) # G. C. Greubel, Sep 17 2019
CROSSREFS
Sequence in context: A037684 A246513 A015559 * A259554 A370027 A147962
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 02 2004
STATUS
approved