OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: A(x) = 2/((1-8*x) + (1-8*x)^(3/4)).
Conjecture: n*(n-1)*(n+1)*a(n) -12*n*(2*n-1)*(n-1)*a(n-1) +12*(n-1) * (16*n^2-32*n+17)*a(n-2) -16*(4*n-5)*(4*n-7)*(2*n-3)*a(n-3) = 0. - R. J. Mathar, Nov 16 2012
a(n) ~ 2^(3*n+1) / (Gamma(3/4)*n^(1/4)) * (1 - Gamma(3/4) / (n^(1/4) * sqrt(Pi))). - Vaclav Kotesovec, Feb 04 2014
MAPLE
seq(coeff(series(2/((1-8*x) + (1-8*x)^(3/4)), x, n+1), x, n), n = 0 ..20); # G. C. Greubel, Sep 17 2019
MATHEMATICA
CoefficientList[Series[2/((1-8*x) + (1-8*x)^(3/4)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
PROG
(PARI) a(n)=polcoeff(2/((1-8*x)+(1-8*x+x*O(x^n))^(3/4)), n, x)
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 2/((1-8*x) + (1-8*x)^(3/4)) )); // G. C. Greubel, Sep 17 2019
(Sage)
def A097180_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P(2/((1-8*x) + (1-8*x)^(3/4))).list()
A097180_list(20) # G. C. Greubel, Sep 17 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 02 2004
STATUS
approved