OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Rows n = 0..50 of triangle, flattened
FORMULA
EXAMPLE
Row polynomials evaluated at y=1/2 equals powers of 4:
4^1 = 1 + 6/2;
4^2 = 1 + 9/2 + 42/2^2;
4^3 = 1 + 12/2 + 74/2^2 + 308/2^3;
4^4 = 1 + 15/2 + 115/2^2 + 595/2^3 + 2310/2^4;
where A077860(y)^(n+1) has the same initial terms as the n-th row:
A077860(y) = 1 +3*y +5*y^2 +5*y^3 +1*y^4 -7*y^5 -15*y^6 -15*y^7 +...
A077860(y)^2 = 1 + 6*y +...
A077860(y)^3 = 1 + 9*y + 42*y^2 +...
A077860(y)^4 = 1 + 12*y + 74*y^2 + 308*y^3 +...
A077860(y)^5 = 1 + 15*y + 115*y^2 + 595*y^3 + 2310*y^4 +...
Rows begin with n=0:
1;
1, 6;
1, 9, 42;
1, 12, 74, 308;
1, 15, 115, 595, 2310;
1, 18, 165, 1020, 4746, 17556;
1, 21, 224, 1610, 8722, 37730, 134596;
1, 24, 292, 2392, 14778, 73080, 299508, 1038312;
1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918; ...
MATHEMATICA
Table[SeriesCoefficient[2*y/((1-8*x*y) +(2*y-1)*(1-8*x*y)^(3/4)), {x, 0, n}, {y, 0, k}], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
PROG
(PARI) {T(n, k)=if(n==0, 1, if(k==0, 1, if(k==n, 2^n*(4^n-sum(j=0, n-1, T(n, j)/2^j)), polcoeff((Ser(vector(n, i, T(n-1, i-1)), x) +x*O(x^k))^((n+1)/n), k, x))))}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Aug 02 2004
STATUS
approved