The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097176 a(n) = Sum_{k=0..n} binomial(floor((n+1)/2), floor((k+1)/2)) * 5^k. 3
 1, 6, 31, 186, 811, 5466, 21091, 157746, 548371, 4492026, 14257651, 126558306, 370698931, 3534656586, 9638172211, 98004586866, 250592477491, 2700707149146, 6515404414771, 74033083143426, 169400514784051, 2020227593369706 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = (6/5)*{1, 26, 26, 676, 676, 17576, ...} - 25*{0, 1, 0, 25, 0, 625, ...} - (1/5)*{1, 1, 1, 1, 1, 1, ...}. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,51,-51,-650,650). FORMULA G.f.: (1 +5*x -26*x^2 -100*x^3)/((1-x)*(1-25*x^2)*(1-26*x^2)). a(n) = (3/5)*((1-sqrt(26))*(-sqrt(26))^n + (1+sqrt(26))*(sqrt(26))^n) - (5/2)*(5^n - (-5)^n) - 1/5. a(n) = a(n-1) + 51*a(n-2) - 51*a(n-3) - 650*a(n-4) + 650*a(n-5). MAPLE seq(coeff(series((1+5*x-26*x^2-100*x^3)/((1-x)*(1-25*x^2)*(1-26*x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Sep 17 2019 MATHEMATICA CoefficientList[Series[(1+5*x-26*x^2-100*x^3)/((1-x)*(1-25*x^2)*(1- 26*x^2)), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2019 *) LinearRecurrence[{1, 51, -51, -650, 650}, {1, 6, 31, 186, 811}, 30] (* Harvey P. Dale, Oct 27 2020 *) PROG (PARI) my(x='x+O('x^30)); Vec((1+5*x-26*x^2-100*x^3)/((1-x)*(1-25*x^2)*(1-26*x^2))) \\ G. C. Greubel, Sep 17 2019 (Magma) R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (1+5*x-26*x^2-100*x^3)/((1-x)*(1-25*x^2)*(1-26*x^2)) )); // G. C. Greubel, Sep 17 2019 (Sage) def A097194_list(prec): P. = PowerSeriesRing(QQ, prec) return P((1+5*x-26*x^2-100*x^3)/((1-x)*(1-25*x^2)*(1-26*x^2))).list() A097194_list(20) # G. C. Greubel, Sep 17 2019 (GAP) a:=[1, 6, 31, 186, 811];; for n in [6..30] do a[n]:=a[n-1]+51*a[n-2] -51*a[n-3]-650*a[n-4]+650*a[n-5]; od; a; # G. C. Greubel, Sep 17 2019 CROSSREFS Cf. A097175, A097177. Sequence in context: A275403 A338674 A199320 * A361306 A368535 A362387 Adjacent sequences: A097173 A097174 A097175 * A097177 A097178 A097179 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 30 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 06:18 EDT 2024. Contains 373432 sequences. (Running on oeis4.)