The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097176 a(n) = Sum_{k=0..n} binomial(floor((n+1)/2), floor((k+1)/2)) * 5^k. 3
1, 6, 31, 186, 811, 5466, 21091, 157746, 548371, 4492026, 14257651, 126558306, 370698931, 3534656586, 9638172211, 98004586866, 250592477491, 2700707149146, 6515404414771, 74033083143426, 169400514784051, 2020227593369706 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) = (6/5)*{1, 26, 26, 676, 676, 17576, ...} - 25*{0, 1, 0, 25, 0, 625, ...} - (1/5)*{1, 1, 1, 1, 1, 1, ...}.
LINKS
FORMULA
G.f.: (1 +5*x -26*x^2 -100*x^3)/((1-x)*(1-25*x^2)*(1-26*x^2)).
a(n) = (3/5)*((1-sqrt(26))*(-sqrt(26))^n + (1+sqrt(26))*(sqrt(26))^n) - (5/2)*(5^n - (-5)^n) - 1/5.
a(n) = a(n-1) + 51*a(n-2) - 51*a(n-3) - 650*a(n-4) + 650*a(n-5).
MAPLE
seq(coeff(series((1+5*x-26*x^2-100*x^3)/((1-x)*(1-25*x^2)*(1-26*x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Sep 17 2019
MATHEMATICA
CoefficientList[Series[(1+5*x-26*x^2-100*x^3)/((1-x)*(1-25*x^2)*(1- 26*x^2)), {x, 0, 30}], x] (* G. C. Greubel, Sep 17 2019 *)
LinearRecurrence[{1, 51, -51, -650, 650}, {1, 6, 31, 186, 811}, 30] (* Harvey P. Dale, Oct 27 2020 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1+5*x-26*x^2-100*x^3)/((1-x)*(1-25*x^2)*(1-26*x^2))) \\ G. C. Greubel, Sep 17 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (1+5*x-26*x^2-100*x^3)/((1-x)*(1-25*x^2)*(1-26*x^2)) )); // G. C. Greubel, Sep 17 2019
(Sage)
def A097194_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P((1+5*x-26*x^2-100*x^3)/((1-x)*(1-25*x^2)*(1-26*x^2))).list()
A097194_list(20) # G. C. Greubel, Sep 17 2019
(GAP) a:=[1, 6, 31, 186, 811];; for n in [6..30] do a[n]:=a[n-1]+51*a[n-2] -51*a[n-3]-650*a[n-4]+650*a[n-5]; od; a; # G. C. Greubel, Sep 17 2019
CROSSREFS
Sequence in context: A275403 A338674 A199320 * A361306 A368535 A362387
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 30 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 06:18 EDT 2024. Contains 373432 sequences. (Running on oeis4.)