login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246513
a(n) = (4/n^2)*( Sum_{k=0..n-1} k*A246459(k) ).
2
0, 7, 52, 378, 2832, 21785, 171036, 1364391, 11023264, 89985681, 740894700, 6144227430, 51267563280, 430045297695, 3623966778180, 30662599042530, 260367332354496, 2217928838577641, 18947382204700044, 162281586037920126
OFFSET
1,2
COMMENTS
Conjecture: a(n) is always an integer.
Note: the formula for a(n) in terms of A005802 proves that a(n) is an integer, divisible by n-1. - Mark van Hoeij, Nov 06 2023
LINKS
Zhi-Wei Sun, Two new kinds of numbers and their arithmetic properties, arXiv:1408.5381 [math.NT], 2014-2018.
FORMULA
Recurrence: (n-2)*n^2*(2*n-7)*(4*n-5)*a(n) = (n-1)*(80*n^4 - 532*n^3 + 1126*n^2 - 893*n + 195)*a(n-1) - 9*(n-2)^2*(n-1)*(2*n-5)*(4*n-1)*a(n-2). - Vaclav Kotesovec, Aug 28 2014
a(n) ~ 3^(2*n+1/2) / (2*Pi*n). - Vaclav Kotesovec, Aug 28 2014
a(n) = (n-1) * ((n+1)^2 * A005802(n-1) - (n-1)*n * A005802(n-2)). - Mark van Hoeij, Nov 06 2023
EXAMPLE
a(2) = 7 since (4/2^2)*( Sum_{k=0..1} k*A246459(k) ) = A246459(1) = 7.
MAPLE
h := n -> hypergeom([1/2, 1 - n, -n], [2, 2], 4):
a := n -> (n - 1) * ((n + 1)^2 * h(n) / n - n * h(n - 1)):
seq(simplify(a(n)), n = 1..20); # Peter Luschny, Nov 06 2023
ogf := (((-54*x^4+18*x^3+30*x^2+6*x)*hypergeom([4/3, 4/3], [2], -27*x*(x-1)^2/(9*x-1)^2)+(-1701*x^3+783*x^2-111*x+5)*hypergeom([1/3, 1/3], [1], -27*x*(x-1)^2/(9*x-1)^2))/(1-9*x)^(8/3) - 5)/6;
series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
MATHEMATICA
s[n_] := Sum[Binomial[n, k]^2 Binomial[2 k, k] (2 k + 1), {k, 0, n}]
a[n_] := Sum[k s[k], {k, 0, n-1}] 4/n^2
Table[a[n], {n, 1, 20}]
CROSSREFS
Sequence in context: A258845 A037593 A037684 * A015559 A097180 A259554
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 28 2014
STATUS
approved