OFFSET
1,2
COMMENTS
Conjecture: a(n) is always an integer.
Note: the formula for a(n) in terms of A005802 proves that a(n) is an integer, divisible by n-1. - Mark van Hoeij, Nov 06 2023
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..150
Zhi-Wei Sun, Two new kinds of numbers and their arithmetic properties, arXiv:1408.5381 [math.NT], 2014-2018.
FORMULA
Recurrence: (n-2)*n^2*(2*n-7)*(4*n-5)*a(n) = (n-1)*(80*n^4 - 532*n^3 + 1126*n^2 - 893*n + 195)*a(n-1) - 9*(n-2)^2*(n-1)*(2*n-5)*(4*n-1)*a(n-2). - Vaclav Kotesovec, Aug 28 2014
a(n) ~ 3^(2*n+1/2) / (2*Pi*n). - Vaclav Kotesovec, Aug 28 2014
MAPLE
h := n -> hypergeom([1/2, 1 - n, -n], [2, 2], 4):
a := n -> (n - 1) * ((n + 1)^2 * h(n) / n - n * h(n - 1)):
seq(simplify(a(n)), n = 1..20); # Peter Luschny, Nov 06 2023
ogf := (((-54*x^4+18*x^3+30*x^2+6*x)*hypergeom([4/3, 4/3], [2], -27*x*(x-1)^2/(9*x-1)^2)+(-1701*x^3+783*x^2-111*x+5)*hypergeom([1/3, 1/3], [1], -27*x*(x-1)^2/(9*x-1)^2))/(1-9*x)^(8/3) - 5)/6;
series(ogf, x=0, 25); # Mark van Hoeij, Nov 12 2023
MATHEMATICA
s[n_] := Sum[Binomial[n, k]^2 Binomial[2 k, k] (2 k + 1), {k, 0, n}]
a[n_] := Sum[k s[k], {k, 0, n-1}] 4/n^2
Table[a[n], {n, 1, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 28 2014
STATUS
approved