The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246511 a(n) = (Sum_{k=0..n-1} (-1)^k*(2k+1)*C(n-1,k)^2*C(n+k,k)^2)/n, where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!). 5
 1, -13, 103, 219, -26139, 503957, -4066061, -54914149, 2550230113, -43157232273, 192777017511, 10118180981037, -318814450789587, 4344955121014089, 6807591584551563, -1781238363905009253, 42912636577174295769, -425791821468024981709, -5452095049517604924017, 305524943325956601071159 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Zhi-Wei Sun proved that a(n) is always an integer, and that Sum_{k=0..n-1}(2k+1)*A(k) = n^3*a(n), where A(k) = Sum_{j=0..k} (-1)^j*(2j+1)^2*C(k,j)^2*C(k+j,j)^2. The Zeilberger algorithm could yield a complicated fourth-order recurrence for this sequence. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..100 Zhi-Wei Sun, Two new kinds of numbers and their arithmetic properties, arXiv:1408.5381 [math.NT], 2014-2018. FORMULA a(n) = hypergeom([3/2, 1-n, 1-n, n+1, n+1], [1/2, 1, 1, 1], -1)/n. - Robert Israel, Aug 28 2014 Recurrence: (n-1)^2*n^3*(2*n-7)*(2*n-5)*(40*n^6 - 600*n^5 + 3612*n^4 - 11120*n^3 + 18354*n^2 - 15270*n + 4949)*a(n) = -2*(n-1)^2*(2*n-7)*(1120*n^10 - 21280*n^9 + 173136*n^8 - 789528*n^7 + 2217244*n^6 - 3965700*n^5 + 4511984*n^4 - 3162198*n^3 + 1267357*n^2 - 247675*n + 14910)*a(n-1) - 2*(n-2)*(2*n-7)*(2*n-1)*(9080*n^10 - 181600*n^9 + 1569004*n^8 - 7670464*n^7 + 23311258*n^6 - 45445432*n^5 + 56332869*n^4 - 42029480*n^3 + 16243359*n^2 - 1773884*n - 347928)*a(n-2) - 2*(n-3)^2*(2*n-1)*(1120*n^10 - 23520*n^9 + 213456*n^8 - 1095144*n^7 + 3485308*n^6 - 7092252*n^5 + 9139424*n^4 - 7057450*n^3 + 2811541*n^2 - 317773*n - 61278)*a(n-3) - (n-4)^3*(n-3)^2*(2*n-3)*(2*n-1)*(40*n^6 - 360*n^5 + 1212*n^4 - 1872*n^3 + 1266*n^2 - 234*n - 35)*a(n-4). - Vaclav Kotesovec, Sep 07 2014 EXAMPLE a(2) = -13 since Sum_{k=0,1}(-1)^k*(2k+1)C(1,k)^2*C(2+k,k)^2 = 1 - 3*3^2 = 2*(-13). MAPLE a:= n -> add((-1)^k*(2*k+1)*binomial(n-1, k)^2*binomial(n+k, k)^2, k=0..n-1)/n: seq(a(n), n=1..40); # Robert Israel, Aug 28 2014 MATHEMATICA a[n_]:=Sum[(-1)^k*(2k+1)*Binomial[n-1, k]^2*Binomial[n+k, k]^2, {k, 0, n-1}]/n Table[a[n], {n, 1, 20}] CROSSREFS Cf. A246065, A246138, A246459, A246460, A246461, A246462. Sequence in context: A289420 A050670 A142318 * A085957 A119594 A066034 Adjacent sequences:  A246508 A246509 A246510 * A246512 A246513 A246514 KEYWORD sign AUTHOR Zhi-Wei Sun, Aug 27 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:40 EST 2021. Contains 349589 sequences. (Running on oeis4.)