login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376269
a(n) = n! + (n - 1)! + (n - 2)! + n - 3.
4
3, 9, 33, 152, 867, 5884, 46085, 408246, 4032007, 43908488, 522547209, 6745939210, 93884313611, 1401079680012, 22317642547213, 377917892352014, 6778983923712015, 128403161542656016, 2560949482291200017, 53645489280294912018, 1177524571957493760019, 27027108408834293760020
OFFSET
2,1
COMMENTS
a(n) is a lower bound for the length of every superpermutation on n symbols (see links). An upper bound for the length of a minimal superpermutation is given by A341300(n).
LINKS
Anonymous 4chan poster, Robin Houston, Jay Pantone, and Vince Vatter, A lower bound on the length of the shortest superpattern, 2018.
Michael Engen and Vincent Vatter, Containing All Permutations, The American Mathematical Monthly, 128 (1), 2021, pp. 4-24 (preprint version).
James Grime and Brady Haran, Superpermutations, Numberphile video, 2018.
Wikipedia, Superpermutation.
FORMULA
a(n) = A054119(n) + n - 3.
E.g.f.: (3 - x - x^2 - exp(x)*(3 - 4*x + x^2) - (1 - x)*x*log(1 - x))/(1 - x). - Stefano Spezia, Sep 18 2024
a(n) = (n-2)!*n^2 + n - 3. - Chai Wah Wu, Sep 20 2024
D-finite with recurrence (-n+1)*a(n) +(n-2)*(n+2)*a(n-1) -(n-1)*(n-3)*a(n-2) -(4*n-7)*(n-4)=0. - R. J. Mathar, Sep 23 2024
MATHEMATICA
Table[n^2 * (n - 2)! + n - 3, {n, 2, 25}]
PROG
(Python)
from sympy import factorial
def A376269(n): return n**2*factorial(n-2)+n-3 # Chai Wah Wu, Sep 20 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo Xausa, Sep 18 2024
STATUS
approved