login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341300
a(n) = n! + (n-1)! + (n-2)! + (n-3)! + n - 3.
3
10, 34, 154, 873, 5908, 46205, 408966, 4037047, 43948808, 522910089, 6749568010, 93924230411, 1401558681612, 22323869568013, 378005070643214, 6780291598080015, 128424084332544016, 2561305169719296017, 53651891654000640018, 1177646217057902592019
OFFSET
3,1
COMMENTS
a(n) is an upper bound for the length of a minimal superpermutation on n symbols (see links). A lower bound is given by A376269(n). - Paolo Xausa, Sep 27 2024
LINKS
Michael Engen and Vincent Vatter, Containing all permutations, Amer. Math. Monthly, 128 (2021), 4-24; arXiv preprint, arXiv:1810.08252 [math.CO], 2018-2020.
Wikipedia, Superpermutation.
FORMULA
a(n) = (n-3)!*(n^2*(n-2) + 1) + n - 3. - Chai Wah Wu, Sep 20 2024
MATHEMATICA
Array[Total[(# - Range[0, 3])!] + # - 3 &, 20, 3] (* Michael De Vlieger, Apr 07 2021 *)
PROG
(Python)
from sympy import factorial
def A341300(n): return (n**2*(n-2)+1)*factorial(n-3)+n-3 # Chai Wah Wu, Sep 20 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 13 2021
STATUS
approved