OFFSET
0,2
FORMULA
G.f.: (1-sqrt(8*x^2-8*x+1))/(4*(1-x)^2*x).
D-finite with recurrence: (n+1)*a(n) +2*(-5*n+1)*a(n-1) +(25*n-23)*a(n-2) +12*(-2*n+3)*a(n-3) +8*(n-2)*a(n-4)=0. - R. J. Mathar, Mar 12 2017
MAPLE
f := gfun:-rectoproc({(n + 1)*a(n) + 2*(-5*n + 1)*a(n - 1) + (25*n - 23)*a(n - 2) + 12*(-2*n + 3)*a(n - 3) + 8*(n - 2)*a(n - 4) = 0, a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 33}, a(n), remember); map(f, [$ (0 .. 20)]); # Georg Fischer, Feb 13 2020
PROG
(Maxima)
g(k):=1/(k+1)*sum((-1)^j*2^(k-j)*binomial(k+1, j)*binomial(2*k-j, k), j, 0, k);
makelist(sum(binomial(n+1, k+1)*g(k), k, 0, n), n, 0, 23);
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Oct 12 2016
STATUS
approved