login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277395
a(n) = Sum_{k=0..n} binomial(n+1,k+1)*A001003(k).
0
1, 3, 9, 33, 145, 713, 3745, 20513, 115713, 667329, 3916033, 23305857, 140327681, 853262465, 5231925761, 32313686529, 200843829249, 1255308123137, 7884792852481, 49745076576257, 315091155558401, 2003009460686849, 12774610185633793
OFFSET
0,2
FORMULA
G.f.: (1-sqrt(8*x^2-8*x+1))/(4*(1-x)^2*x).
D-finite with recurrence: (n+1)*a(n) +2*(-5*n+1)*a(n-1) +(25*n-23)*a(n-2) +12*(-2*n+3)*a(n-3) +8*(n-2)*a(n-4)=0. - R. J. Mathar, Mar 12 2017
MAPLE
f := gfun:-rectoproc({(n + 1)*a(n) + 2*(-5*n + 1)*a(n - 1) + (25*n - 23)*a(n - 2) + 12*(-2*n + 3)*a(n - 3) + 8*(n - 2)*a(n - 4) = 0, a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 33}, a(n), remember); map(f, [$ (0 .. 20)]); # Georg Fischer, Feb 13 2020
PROG
(Maxima)
g(k):=1/(k+1)*sum((-1)^j*2^(k-j)*binomial(k+1, j)*binomial(2*k-j, k), j, 0, k);
makelist(sum(binomial(n+1, k+1)*g(k), k, 0, n), n, 0, 23);
CROSSREFS
Cf. A001003.
Sequence in context: A001930 A049425 A333889 * A012584 A101899 A376269
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Oct 12 2016
STATUS
approved