login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! + (n - 1)! + (n - 2)! + n - 3.
4

%I #44 Sep 27 2024 23:01:06

%S 3,9,33,152,867,5884,46085,408246,4032007,43908488,522547209,

%T 6745939210,93884313611,1401079680012,22317642547213,377917892352014,

%U 6778983923712015,128403161542656016,2560949482291200017,53645489280294912018,1177524571957493760019,27027108408834293760020

%N a(n) = n! + (n - 1)! + (n - 2)! + n - 3.

%C a(n) is a lower bound for the length of every superpermutation on n symbols (see links). An upper bound for the length of a minimal superpermutation is given by A341300(n).

%H Paolo Xausa, <a href="/A376269/b376269.txt">Table of n, a(n) for n = 2..400</a>

%H Anonymous 4chan poster, Robin Houston, Jay Pantone, and Vince Vatter, <a href="/A180632/a180632.pdf">A lower bound on the length of the shortest superpattern</a>, 2018.

%H Michael Engen and Vincent Vatter, <a href="https://doi.org/10.1080/00029890.2021.1835384">Containing All Permutations</a>, The American Mathematical Monthly, 128 (1), 2021, pp. 4-24 (<a href="https://doi.org/10.48550/arXiv.1810.08252">preprint version</a>).

%H James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=wJGE4aEWc28">Superpermutations</a>, Numberphile video, 2018.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Superpermutation">Superpermutation</a>.

%F a(n) = A054119(n) + n - 3.

%F E.g.f.: (3 - x - x^2 - exp(x)*(3 - 4*x + x^2) - (1 - x)*x*log(1 - x))/(1 - x). - _Stefano Spezia_, Sep 18 2024

%F a(n) = (n-2)!*n^2 + n - 3. - _Chai Wah Wu_, Sep 20 2024

%F D-finite with recurrence (-n+1)*a(n) +(n-2)*(n+2)*a(n-1) -(n-1)*(n-3)*a(n-2) -(4*n-7)*(n-4)=0. - _R. J. Mathar_, Sep 23 2024

%t Table[n^2 * (n - 2)! + n - 3, {n, 2, 25}]

%o (Python)

%o from sympy import factorial

%o def A376269(n): return n**2*factorial(n-2)+n-3 # _Chai Wah Wu_, Sep 20 2024

%Y Cf. A054119, A180632, A332089, A341300.

%K nonn,easy

%O 2,1

%A _Paolo Xausa_, Sep 18 2024