login
A376272
Elated numbers: numbers whose trajectory under iteration of the A376270 map includes 1.
7
1, 10, 13, 21, 43, 51, 67, 77, 88, 92, 97, 100, 103, 117, 124, 130, 142, 155, 171, 201, 210, 226, 237, 256, 262, 265, 273, 319, 322, 337, 356, 365, 373, 391, 403, 430, 438, 483, 501, 510, 514, 541, 556, 565, 579, 588, 597, 607, 616, 639, 661, 668, 670, 686, 693, 699, 707, 717, 724, 742, 746
OFFSET
1,2
LINKS
N. Bradley Fox et al., Elated Numbers, arXiv:2409.09863 [math.NT], 2024.
MAPLE
b:= proc(n) b(n):= (l-> l[-1]*add(i^2, i=l))(convert(n, base, 10)) end:
q:= proc(n) option remember; local k, s; k, s:= n, {};
while not (k=1 or k in s) do s, k:= {s[], k}, b(k) od: is(k=1)
end:
select(q, [$1..1000])[]; # Alois P. Heinz, Sep 18 2024
PROG
(PARI) f(n) = if (n, my(d=digits(n)); d[1]*norml2(d), 0); \\ A376270
isok(n) = my(list=List()); while(1, my(m=f(n)); if (m==1, return(1)); if (#select(x->(x==m), Vec(list)), return(0)); listput(list, m); n=m); 0;
(Python)
def f(n): return (d:=list(map(int, str(n))))[0] * sum(di*di for di in d)
def ok(n):
if n == 1: return True
traj = {n}
while (n:=f(n)) not in traj: traj.add(n)
return 1 in traj
print([k for k in range(750) if ok(k)]) # Michael S. Branicky, Sep 18 2024
CROSSREFS
b-elated numbers: A000027 (2), A376272 (10).
Sequence in context: A159839 A129075 A095918 * A191969 A018785 A176762
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Sep 18 2024
STATUS
approved