login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123747 Numerators of partial sums of a series for sqrt(5). 6
1, 7, 41, 9, 239, 6227, 32059, 163727, 166301, 841229, 21215481, 106782837, 536618341, 538698461, 172897, 13538601629, 67813224223, 339532842359, 339895847771, 1700893049407, 42549895540939, 212857129279583 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Denominators are given by A123748.

The sum over central binomial coefficients scaled by powers of 5, r(n) = Sum_{k=0..n} binomial(2*k,k)/5^k, has the limit lim_{n -> infinity} r(n) = sqrt(5). From the expansion of 1/sqrt(1-x) for x=4/5.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Wolfdieter Lang, Rationals and more.

FORMULA

a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} binomial(2*k,k)/5^k, in lowest terms.

r(n) = Sum_{k=0..n} (((2*k-1)!!/((2*k)!!)*(4/5)^k, n>=0, with the double factorials A001147 and A000165.

EXAMPLE

a(3)=9 because r(3)= 1+2/5+6/25+4/25 = 9/5 = a(3)/A123748(3).

MAPLE

A123747:=n-> numer(sum(binomial(2*k, k)/5^k, k=0..n)); seq(A123747(n), n=0..25); # G. C. Greubel, Aug 10 2019

MATHEMATICA

Table[Numerator[Sum[Binomial[2*k, k]/5^k, {k, 0, n}]], {n, 0, 25}] (* G. C. Greubel, Aug 10 2019 *)

PROG

(PARI) vector(25, n, n--; numerator(sum(k=0, n, binomial(2*k, k)/5^k))) \\ G. C. Greubel, Aug 10 2019

(MAGMA) [Numerator( (&+[Binomial(2*k, k)/5^k: k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 10 2019

(Sage) [numerator( sum(binomial(2*k, k)/5^k for k in (0..n)) ) for n in (0..25)] # G. C. Greubel, Aug 10 2019

(GAP) List([0..25], n-> NumeratorRat(Sum([0..n], k-> Binomial(2*k, k)/5^k )) ); # G. C. Greubel, Aug 10 2019

CROSSREFS

Cf. A001077/A001076 continued fraction convergents for sqrt(5).

Cf. A123748, A123749.

Sequence in context: A062727 A223416 A165397 * A144421 A023251 A073501

Adjacent sequences:  A123744 A123745 A123746 * A123748 A123749 A123750

KEYWORD

nonn,frac,easy

AUTHOR

Wolfdieter Lang, Nov 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 02:17 EDT 2022. Contains 353959 sequences. (Running on oeis4.)